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Abstract- Runtime-configuration and operation of design IP is increasingly dependent on firmware. However, 

firmware for those IPs is often created too late, and in an unsuitable form, to be helpful in SoC-bringup tests. This 

presents an obstacle to creating SoC integration tests, and often results in late discovery of hardware/software interaction 

issues. This paper proposes an Accellera Portable Test and Stimulus (PSS) -enabled flow for co-developing and co-

verifying design IP and firmware. 

 

I. INTRODUCTION 

Runtime-configuration and operation of design IP is increasingly dependent on firmware (low-level software). A 

side effect of this operational dependency is that SoC integration testing also depends on the availability of firmware 

for the IPs within the SoC.  

Accellera Portable Test and Stimulus (PSS) [1] is a language used for defining model-based tests, with specific 

features that target the concerns of creating SoC integration tests. Using PSS to create tests boosts test-creation 

productivity, but a PSS-based test description is still reliant on the existence of low-level firmware to interact with IPs 

within the system.  

Unfortunately, this lowest-level firmware for IPs is often developed independently of the IP development and 

verification process. This means that it is often not ready at the point when, ideally, it could be leveraged along with 

PSS in creating SoC-integration tests. Firmware is often developed as production software targeting a production 

operating system. This means that it is even challenging to leverage production firmware created for similar (eg older) 

IPs, since the software environment used for SoC-integration testing is more resource constrained than the production 

software environment. 

There are several unfortunate consequences of the current situation. Hardware/software integration issues are 

discovered late when they could be discovered while the IP was being designed and verified. SoC-integration testing 

is impeded by a lack of readily-available low-level driver firmware. This often leads to the SoC-bringup team writing 

their own low-level drivers which is both wasteful and error-prone, and delays when PSS can productively be deployed 

to create more-complex test scenarios. Ideally, of course, we want the SoC firmware platform to be ready and stable 

as soon as the SoC IP is integrated, and be ready to deploy PSS for expanded test coverage. 

 

II. GOALS AND REQUIREMENTS 

Before describing the elements of an approach that will enable device driver firmware to be developed, verified, 

and delivered along with IP, it is well worth delving into overall goals and requirements. As with many things, let’s 

look at the flow starting with the end in mind. 

 



 
Figure 1 - SoC-level verification environment 

 

Figure 1 shows an SoC-level verification environment and the reusable elements that form the design and 

verification environment in our idealized early-firmware-development flow. Our goal is to enable the IP design and 

verification teams to not only deliver fully-verified RTL that can be incorporated into the SoC, but to also deliver test 

content and firmware that can be rapidly assembled and form the basis for SoC-level tests. The flow shown above is 

PSS-enabled, which means that each IP requires some IP-specific PSS model content that enables scenarios involving 

that IP to be created. Our goal is for IP-specific driver firmware and PSS test content to be developed and delivered 

as part of the full IP DV-team’s deliverable. It is also important that the driver firmware and PSS test content easily 

integrate at the SoC level.  

 

 
Figure 2 - IP-Level Verification Environment 

Figure 2 shows the IP-level verification environment from our idealized early-firmware development flow. In many 

respects, there is little change from a standard UVM-based environment. Verification IP is used to interact with the 

design RTL via its interfaces. UVM sequences drive stimulus using the verification IP, scoreboards are used to check 



results, and functional coverage is used to ensure that key cases are exercised. These aspects of IP verification remain 

in place, and remain key to achieving high-quality design RTL.  

What changes is the introduction of software-driven tests that interact with the environment via low-level driver 

firmware, which will be provided as part of the comprehensive IP deliverable. Also added is PSS low-level test content 

that will be provided along with the IP, and PSS test content that is specific to the IP level and will not be delivered 

with the IP. A key goal in this process is to simplify the process of developing and testing low-level driver firmware 

such that the IP design and verification team is easily able to capture their knowledge of how to interact with the IP. 

 

III. KEY CHALLENGES AND DESIGN DECISIONS 

One of the larger challenges in realizing the solution shown above isn’t connecting software behavior into an IP-

level verification environment. It is encapsulating and packaging driver firmware and test content such that it can 

easily be incorporated, along with driver firmware and test content for other IPs, at the SoC level. There is a not-

insignificant history [2] [3] of bringing some aspects of low-level software into verification environments via 

simulation interfaces, such as the SystemVerilog DPI. These solutions deal with how firmware for a single device is 

incorporated into an IP-level simulation environment, but do not deal combining firmware for multiple devices at the 

SoC level. At the SoC level, firmware modules for multiple IPs and for multiple instances of a given IP must be 

integrated and configured. For example, different driver instances must be configured to use different base addresses 

and must be connected to different interrupts. And, of course, the resulting software image must run with sufficient 

speed on the RTL implementation of the design cores to enable integration and performance verification in a 

simulation or emulation environment. 

Bare-metal software is most-commonly used for SoC-level integration tests. Bare-metal software provides very few 

services, such as preemptive thread scheduling or memory allocation, to the software author. Its key advantage is that 

it provides full control over the hardware and imposes little memory, performance, and structural overhead. In order 

to enable driver code to easily integrate and interoperate, we will need to impose some structure and conventions on 

the driver code. This paper proposes the use of an existing RTOS (the Zephyr RTOS) instead of a new bare-metal 

driver-integration framework because it provides the required driver integration structure, while retaining many of the 

memory and performance characteristics of bare-metal software. The Zephyr Project [4] develops a highly-

configurable Real-Time Operating System (RTOS) kernel targeting resource-constrained devices. Zephyr is available 

under a permissive open-source license, and the project is used and sponsored by a wide variety of non-profit and 

commercial entities. As a side-effect of its focus on resource-constrained devices, Zephyr imposes very little overhead 

compared to pure bare-metal software running without an OS or RTOS. This is important for SoC-level testing, since 

SoC-level tests must be able to have a high degree of control over interactions in the system – something that full-OS 

kernels may interfere with. Zephyr can also be configured to have a very small footprint (~8KB [5]) and has a very 

minimal boot process. Due to these factors, using Zephyr during the SoC bring-up test process imposes very little 

overhead on the verification process. 

A huge benefit of reusing an existing RTOS for verification vs designing a custom framework for software-driven 

verification is an ability to leverage the existing RTOS ecosystem. Zephyr has a sizable collection of member 

companies and organizations, well-maintained documentation, tutorials by third-party developers, and existing 

developers experienced with the RTOS.  

 

 
Figure 3 - Zephyr Modular Architecture 

 



One very attractive aspect of the Zephyr RTOS from a verification perspective is that it is very modular and 

configurable. Due to its requirements to support a wide variety of processor architectures and devices, the Zephyr 

RTOS has a layered architecture (Figure 3) that enables the RTOS implementation and included device drivers to be 

easily changed as needed without impacting other aspects of the RTOS stack. For example, we can easily change the 

targeted processor architecture without impacting how device drivers are included in the OS.  

Due to its focus on deeply-embedded systems, the Zephyr RTOS has a different application structure than what one 

might typically think of when thinking about an operating system. When compiling application code for a traditional 

operating system such as Linux, the output is an executable image that is independent of the operating system image. 

Specifically, the application executable is executed by the running operating system. When compiling application 

code for Zephyr, the output is a single executable image that includes the application, operating system kernel, and 

driver code. This structure works well for deeply-embedded systems that typically execute a single application from 

non-volatile storage, and do not have an external filesystem from which to load applications. This structure also works 

well for bare-metal SoC-bringup tests due to its simplicity. The monolithic-executable model enables Zephyr to 

perform nearly all initialization activity, such as creating driver instances, statically at compile time, which contributes 

significantly to Zephyr’s small memory footprint and fast startup time. 

 

Targeting Zephyr OS to an IP-level Environment 

Zephyr supports a target architecture named posix that implements the architecture layer using POSIX API calls. 

Using the posix architecture, all the RTOS layers shown in Figure 3 are compiled into a single executable that runs on 

the host workstation. As the documentation states [6], this architecture is primarily intended for testing by application 

developers. However, we can leverage Zephyr’s support for the posix architecture to run a test program (the 

application) that uses driver code to interact with an IP in the context of an IP-level verification environment. 

 

 
Figure 4 - IP-Level Zephyr Image 

 

Due to its modularity, configuring the Zephyr RTOS to co-simulate with an IP-level testbench environment requires 

no changes to the core of the RTOS. Figure 4 shows the components of the Zephyr executable that can co-simulate 

with a UVM testbench environment. The application, in this case, is the test code that interacts with the IP via the 

low-level driver being developed. The board layer is created using a template provided by the Zephyr-Cosim package 

[7], and properly configures the driver-under-development and causes it to be included in the Zephyr executable 

image. The SoC layer intercepts calls to the Zephyr functions used by the driver code to access IP registers, and 

redirects them to the UVM testbench. The SoC layer is entirely provided by the Zephyr-Cosim package. The 

Architecture layer is provided by the Zephyr posix architecture code. 

 

Connecting Zephyr OS to a UVM Environment 

One of the most-popular methods for incorporating native-compiled code into a SystemVerilog simulation is to 

compile the code as a shared library that can be loaded by the simulator and accessed via the SystemVerilog Direct 

Programming Interface (DPI). Due to the structure of the Zephyr executable, and some of the link-time optimizations 

that enable small code size and static initialization, taking this approach is not feasible. Zephyr-Cosim, instead, 

integrates with the simulator via the tblink-rpc package [8]. tblink-rpc is a generic co-simulation library that allows 

remote procedure call (cross-calling) between simulation-external (ie non-SystemVerilog) code and testbench code 



running in the simulator. The tblink-rpc package supports co-simulation with standalone executables, which is how 

we will connect the Zephyr-based test and driver code to our simulation.  

 

 
Figure 5 - Zephyr-Cosim Simulation Integration 

 

Figure 5 shows a diagram of the co-simulation between a UVM testbench and the Zephyr-based software test 

application. The Zephyr-Cosim package provides a UVM agent that manages the Zephyr software executable, and 

interacts with the testbench using a UVM register adapter [9] connected to the UVM agent connected to the register 

interface. 

One benefit of running software compiled for the host workstation instead of emulating execution of target-

architecture code is that host-platform debug and analysis tools can be used on the driver code under development. 

For example, the memory-checking tool Valgrind [10] can be used to detect memory-access bugs. Familiar software-

development tools, such as the GNU Debugger (GDB), Eclipse, and VSCode may all be used to debug logic bugs. 

 

IV. THE DEVICE DRIVER PACKAGE 

The Zephyr RTOS supports developing device drivers and other OS components outside the main OS tree. This 

capability is very helpful in accomplishing our goal of co-developing and co-locating driver firmware with the RTL 

IP. There are three elements that we will group together as part of the firmware and test-content package: driver meta-

data, driver firmware, and PSS test content.  

 

 
Figure 6 – Device Driver Package Elements 

 

The Zephyr RTOS uses the Devicetree Specification [11] to specify what devices exist in a given system, and to 

configure the drivers used to access those devices. The Device-Tree Bindings portion of the device driver package 

captures configurable aspects of the device, such as the interrupts (if any) that it generates. The core of the driver is 



the driver software and build files that enable the driver software to be incorporated in a Zephyr image. Reusable PSS 

elements are provided to simplify SoC test creation.  

 

Device Driver Structure 

At the IP level, we will focus on a driver for a DMA engine. The Zephyr RTOS defines several standard driver-

driver APIs, but also allows device drivers to define their own custom APIs. When writing a device driver to use in 

production software, there will often be little reason to use a custom API. It’s almost always better to make the device 

look, and the driver behave, like something familiar. However, when writing device drivers for the purpose of SoC 

level testing, it can be beneficial to leverage custom APIs to exercise operational details that may not be relevant to 

production software. 

 

 
Figure 7 - DMA Device Driver API 

Zephyr defines a standard API for DMA devices, which is sufficient for our verification purposes. Figure 7 shows 

two of the public-interface functions along with documentation. Our task in developing a driver is to implement the 

device-specific ‘back-end’ of these public functions by accessing the registers of our specific IP. Figure 8 shows our 

driver’s implementation of the reload function that configures a DMA channel to carry out a transfer. 

One thing to observe is that the driver-code complexity is on-par with the corresponding code that we would expect 

to see in a UVM testbench to configure the DMA. A design and verification team that has implemented UVM 

sequences to program the DMA engine in the testbench has the device knowledge required to create such low-level 

driver firmware. 

 

/** 

 * @brief Configure individual channel for DMA transfer. 

 * 

 * @param dev     Pointer to the device structure for the driver instance. 

 * @param channel Numeric identification of the channel to configure 

 * @param config  Data structure containing the intended configuration for the 

 *                selected channel 

 * 

 * @retval 0 if successful. 

 * @retval Negative errno code if failure. 

 */ 

int dma_config(const struct device *dev, uint32_t channel, 

        struct dma_config *config); 

 

/** 

 * @brief Reload buffer(s) for a DMA channel 

 * 

 * @param dev     Pointer to the device structure for the driver instance. 

 * @param channel Numeric identification of the channel to configure 

 *                selected channel 

 * @param src     source address for the DMA transfer 

 * @param dst     destination address for the DMA transfer 

 * @param size    size of DMA transfer 

 * 

 * @retval 0 if successful. 

 * @retval Negative errno code if failure. 

 */ 

int dma_reload(const struct device *dev, uint32_t channel, 

  uint32_t src, uint32_t dst, size_t size); 

 



 
Figure 8 - DMA 'reload' function implementation 

 

Connecting PSS to the Device Driver 

The Zephyr driver and software-module framework manages interoperability between embedded software modules. 

The Portable Test and Stimulus Standard supports interoperability between the various IP-specific pieces of test intent. 

A useful total solution must also address interoperability between the RTOS device driver framework and reusable 

PSS test intent. 

The key requirement for connecting PSS to embedded software is that the PSS description be properly-configured 

to use the appropriate instance of the device driver. An observation to make from the public driver API (Figure 7) and 

the implementation functions (Figure 8) is that both receive their context data via a struct device pointer. We will need 

a way to ensure that PSS-created test code passes the correct Zephyr-created device handle to the driver functions.  

There are two nice-to-have aspects of connecting PSS to the device driver: collecting the set of PSS files from the 

IP-specific drivers, and creating the PSS component tree that corresponds to the available devices in the system. These 

aspects can be handled manually, but some of the same features of the Zephyr device driver framework that make it 

easy to package and assemble device drivers for a system can help us to automate these nice-to-have aspects of PSS 

test content assembly. 

 

PSS Test Content Structure 

Figure 9 shows the PSS description that describes how to interact with the DMA engine. The key element is the 

action used to carry out a memory-to-memory DMA transfer on a channel within the DMA engine. The PSS 

component also contains PSS resources, resource pools, and resource claims  that ensure that only a single action can 

use one of the DMA engine’s channels at any point in the test. 

static int fw_periph_dma_reload( 

        const struct device  *dev, 

        uint32_t  channel, 

        uint32_t  src, 

        uint32_t  dst, 

        size_t  size) { 

    const fw_periph_dma_cfg_t *const dma_cfg = 

   (const fw_periph_dma_cfg_t const*)dev->config; 

    uint32_t sz; 

    // Updates the source/dest/size for a transfer, while leaving 

    // the rest of the configuration as-is 

 

    // Configure source and destination addresses 

    sys_write32(src, &dma_cfg->regs->channels[channel].src); 

    sys_write32(dst, &dma_cfg->regs->channels[channel].dst); 

    sz = sys_read32(&dma_cfg->regs->channels[channel].size); 

 

    // Configure the transfer size in the channel-specific registers 

    sz &= ~(0xFFFF); 

    sz |= (size & 0xFFFF); 

    sys_write32(sz, &dma_cfg->regs->channels[channel].size); 

 

    return 0; 

} 

 



 
Figure 9 - DMA PSS Component 

The component also includes a plain-data field called id that we will use to correlate an instance of the DMA 

component in the PSS model with an instance of the device driver configured within the Zephyr RTOS. The 

fwperiph_dma_mem2mem function shown at the bottom of the PSS file and called from the mem2mem_a action is test 

utility function. Test utility functions are typically written at a higher level of abstraction than driver functions, and 

exist to connect the PSS test intent to the lower-level software. 

 

 

component fwperiph_dma_c { 

 // Bring in memory-claim types 

 import addr_reg_pkg::*; 

  

 resource channel_r { } 

  

 pool[4] channel_r  channels; 

 bind channels *; 

 

 // id points to the appropriate driver instance  

 int id; 

  

 action mem2mem_a { 

  lock channel_r    channel; 

  input data_b  dat_i; 

  output data_b  dat_o; 

  rand addr_claim_s<> dst; 

 

 

  constraint dat_i.size > 0; 

  constraint dat_o.size > 0 && dat_o.size <= dat_i.size; 

  constraint dst.size == dat_o.size; 

   

  exec post_solve { 

   dat_o.data = make_handle_from_claim(dst); 

  } 

   

  exec body { 

   fwperiph_dma_mem2mem( 

    comp.id, 

    channel.instance_id, 

    addr_value(dat_i.data), // src 

    addr_value(dat_o.data), // dst 

    dat_o.size); 

  } 

 } 

} 

 

import function void fwperiph_dma_mem2mem( 

 int   dev_id, 

 int   channel, 

 bit[64]   src, 

 bit[64]   dst, 

 int   size); 



 
Figure 10 - Test Utility Function for mem2mem_a Action 

Figure 10 shows the implementation of this test-utility function. The first thing this function does is to map the 

device id passed from the PSS model to a device-struct handle within the Zephyr RTOS. We will leverage some of 

the meta-data required by the Zephyr RTOS to automate creation of this mapping. 

 

Zephyr Board Definition 

The Zephyr RTOS requires a board definition to be provided that specifies what devices exist in the system and the 

configuration for those devices – for example, base addresses, interrupt mappings, etc. Zephyr accepts this information 

in the form of a Devicetree Specification (.dts) file [11]. In order to incorporate our DMA device driver into the Zephyr 

image, we need two things: a Devicetree Specification file, and a schema file that specifies the configurable attributes 

of our IP. 

 

 

void fwperiph_dma_mem2mem( 

  int32_t   dev_id, 

  int32_t   channel, 

  intptr_t   src, 

  intptr_t   dst, 

  int32_t   size) { 

    // Obtain the device handle corresponding to the device id 

    const struct device *dev = id2dev(dev_id); 

 

    // Call the driver function to configure the channel for operation 

    dma_reload(dev, channel, src, dst, size); 

 

    // Start the channel performing the transfer 

    dma_start(dev, channel); 

 

    // Wait for the transfer-complete interrupt 

    dma_wait(dev, channel); 

} 



 
Figure 11 - Devicetree Specification and Device Schema 

Figure 11 shows the Devicetree Specification (left) and Device Schema for our IP. The compatible entries in the 

two files enable the Zephyr RTOS build process to build and link the correct device driver software, and to create a 

device driver instance to support the dma1 device that we have specified exists at base-address 0x00000000.  

 

Fortunately, the Device Schema specification is extensible. We have added several special pss entries where meta-

data about the PSS test content can be stored and later retried by an automation script. We have captured three 

important pieces of information: 

• The name of the PSS top component for this device. An instance of this component must exist in the full 

PSS component tree used at the IP and SoC level. 

• The name of the field in the component that holds the device ID (id in this case). The id field in each 

instance of this component must be properly-set to allow the test-utility code to find the proper device 

handle. 

• The path to the PSS source files that implement the PSS model for this device. 

Configuration entries in the Device Schema file are typically used to expose user-configurable settings. In this case, 

we are using the configuration entries to embed meta-data about the PSS model in a way that can be easily used by 

downstream automation that will also need to extract data from the Devicetree Specification. 

 

PSS-Specific Generated Files 

Our IP-level board definition for Zephyr is quite simple, because there is just a single device. Consequently, the 

generated PSS-integration files will also be quite simple. In our IP-level environment, our Zephyr board is named 

fwperiph_dma_brd.  

 

 /dts-v1/; 

#include <posix/posix.dtsi> 

#include <dt-bindings/i2c/i2c.h> 

#include <dt-bindings/gpio/gpio.h> 

 

/ { 

    model = "Native POSIX Board"; 

    compatible = "zephyr,posix"; 

 

    dma1: fwperiph_dma@0000 { 

        compatible = "fwperiph_dma"; 

        label = "dma1"; 

        reg = <0x00000000 0x00000100>; 

    }; 

 

}; 

description: DMA engine 

 

compatible: "fwperiph_dma" 

 

include: [base.yaml] 

 

properties: 

    reg: 

        required: true 

 

    pss-root-component: 

        type: string 

        required: false 

        default: "fwperiph_dma_c" 

    pss-device-id: 

        type: string 

        required: false 

        default: “id” 

    pss-files: 

        type: string-array 

        required: false 

        default: [“../../pss/fwperiph_dma_c.pss”] 



 
Figure 12 - Generated Board-Specific Component Tree 

Figure 12 shows the PSS component generated from the Devicetree Specification file and the meta-data in the DMA 

Device Schema file. This PSS component will be used in the PSS model for our IP-level test scenarios. 

 

 
Figure 13 - Generated Board-Specific Device-Accessor Function 

Figure 13 shows the generated implementation of the previously-mentioned id2dev function. This function accepts 

an integer ID from the PSS code and returns a handle to the Zephyr device driver. Zephyr provides compile-time 

mechanisms for referencing devices based on their identifier in the Devicetree Specification (dma1 in this example). 

These mechanisms are very appropriate when writing application software, but don’t lend themselves to automatically 

assembling test content. The generated device-accessor function bridges between a variable device identifier that the 

PSS code understands and the compile-time reference to a device driver instances. 

 

At the IP level automation is nice to have, but it is feasible to manually create all the required PSS content. At the 

SoC level, automation is much more important given the number of IPs and the overhead of debugging mistakes made 

when changing the devices and device configurations within the SoC. 

 

V. DEVELOPING IP-LEVEL SCENARIOS 

We will, of course, need to create tests at the IP level for the low-level driver code and PSS test content that the 

SoC team will use. These tests exist to verify the hardware-software interface implemented by the driver, but are not 

a replacement for the detailed hardware verification implemented by the UVM tests and testbench.  

It is also worth noting that the IP-level scenarios will not be used by the SoC team, except as examples and starting 

points for SoC-level scenarios. The low-level driver firmware and PSS test content, such as what is shown in Figure 

9, are the primary reusable assets that the SoC team will leverage. 

So, what should we test at the IP level? We need to ensure that all the PSS reusable test-content actions work 

properly. Concurrent scenarios, where multiple behaviors happen simultaneously, are a key focus of SoC-level testing, 

so we should ensure that our PSS actions and driver code work properly under these circumstances. 

 

component fwperiph_dma_brd_c { 

 

    fwperiph_dma_c                   dma1; 

 

    exec init_down { 

        dma1.id = 0; 

    } 

 

} 

#include <zephyr.h> 

#include <device.h> 

 

static struct device *fwperiph_dma_brd_devices[] = { 

    DEVICE_DT_GET(DT_NODELABEL(dma1)) 

}; 

 

struct device *id2dev(int32_t id) { 

    return fwperiph_dma_brd_devices[id]; 

} 

 



 
Figure 14 - IP-Level Test Scenario 

Figure 14 shows a typical IP-level scenario where four parallel transfers are carried out in a loop. This scenario will 

randomly run overlapping differently-sized transfers on different DMA channels. In addition to testing the basics of 

whether the driver code properly programs the DMA registers, a test like this confirms that the interrupt routine 

properly deals with multiple pending transfers. While our PSS development at the IP level is primarily for the benefit 

of the SoC team at this point, it can also be used as a laboratory in which to begin identifying the types of IP-level 

verification problems where PSS can help.  

 

VI. MOVING TO SOC LEVEL 

Including PSS test content and low-level firmware drivers targeted to a common RTOS as part of the IP deliverable, 

along with design RTL, allows us to achieve reuse with firmware and test content in addition to RTL reuse. Assembly 

automation enabled by the Zephyr RTOS driver framework and our PSS-based additions to the driver modules help 

to simplify the assembly process for the test-software image. 

 

 
Figure 15 - SoC Example Design 

 

At the IP level, we focused on a developing driver firmware for a single DMA engine. At the SoC level (Figure 15), 

we have more IPs – two instances of our DMA IP, along with some communication controllers.  

component fwperiph_dma_uvm_c { 

    fwperiph_dma_brd_c                  board; 

  

    activity entry_a { 

  

        repeat (20) { 

            parallel { 

                do fwperiph_dma_c::mem2mem; 

                do fwperiph_dma_c::mem2mem; 

                do fwperiph_dma_c::mem2mem; 

                do fwperiph_dma_c::mem2mem; 

            } 

        } 

    } 

} 



 
Figure 16 - Soc-Level Devicetree Specification 

 

The corresponding SoC-level Devicetree Specification is shown in Figure 16, and drives creation of the SoC-level 

firmware image (via Zephyr) and the SoC-level PSS infrastructure. Having a single location from which to specify 

required drivers and their configurations (ie base address) simplifies the process of creating the base firmware image.  

/dts-v1/; 

#include <posix/posix.dtsi> 

#include <dt-bindings/i2c/i2c.h> 

#include <dt-bindings/gpio/gpio.h> 

 

/ { 

    model = "Tiny SoC"; 

    compatible = "zephyr,riscv"; 

 

    dma1: fwperiph_dma@80000000 { 

        compatible = "fwperiph_dma"; 

        label = "dma1"; 

        reg = <0x80000000 0x00000100>; 

    }; 

    dma2: fwperiph_dma@80000100 { 

        compatible = "fwperiph_dma"; 

        label = "dma2"; 

        reg = <0x80000100 0x00000100>; 

    }; 

    uart : fwuart@80000200 { 

        compatible = "fwuart"; 

        label = "uart"; 

        reg = <0x80000200 0x00000100>; 

    }; 

    i2c : fwi2c@80000300 { 

        compatible = "fwi2c"; 

        label = "i2c"; 

        reg = <0x80000300 0x00000100>; 

    }; 

    spi : fwspi@80000400 { 

        compatible = "fwspi"; 

        label = "spi"; 

        reg = <0x80000400 0x00000100>; 

    }; 

}; 



 
Figure 17 - Generated PSS Component Tree 

This same description can be leveraged to create the PSS component tree and to connect the PSS components to the 

corresponding device driver instances. There is value in automating this process even when it doesn’t involve much 

code, as is the case with our small example SoC (Figure 17). Deriving the PSS integration from a single specification 

still allows us to avoid keeping the content within three different files in sync. 

 

VII. SOC-LEVEL SCENARIOS 

At the SoC level, our key verification concern is ensuring that the integrated IPs work together under a variety of 

conditions. Consequently, we won’t seek to reuse the specific test scenarios we developed at the IP level. Rather, we 

will combine the IP-level PSS test content, delivered along with the IP RTL, to compose scenarios that exercise the 

IPs in combination. 

 

 
Figure 18 - SoC-level scenario to exercise SPI and UART 

Figure 18 shows a simple SoC-level scenario that makes use of actions delivered along with the UART and SPI IPs 

to exercise transmitting traffic via both simultaneously. Note the instance of the PSS component containing PSS 

component instances (tiny_soc_brd_c) corresponding to each IP, which generated from the DTS file. 

// Note: generated from DTS file tiny_soc_brd.dts 

 

component tiny_soc_brd_c { 

  

 fwperiph_dma_c       dma1; 

 fwperiph_dma_c       dma2; 

 fwuart_c                    uart; 

 fwi2c_c                     i2c; 

 fwspi_c                     spi; 

 

 exec init_down { 

  dma1.id = 0; 

  dma2.id = 1; 

  uart.id = 2; 

  i2c.id  = 3; 

  spi.id  = 4; 

 }  

} 

component tiny_soc_c { 

  

 // IP-specific components 

 tiny_soc_brd_c   board; 

 

 // Send data to SPI and UART simultaneously  

 action mem2spi_uart_c { 

  fwuart_c::xmit_a uart_xmit; 

  fwspi_c::xmit_a spi_xmit; 

  

  parallel { 

   uart_xmit; 

   spi_xmit; 

  } 

 } 

} 



VIII. CONCLUSION 

This paper has shown how the Zephyr RTOS can be used as a framework for developing modular, interoperable, 

low-level driver firmware at the IP level, which enables a complete firmware image to be assembled from IP-delivered 

drivers at the SoC level. Developing firmware along with IP design and verification captures the IP team’s knowledge 

in an executable form that is useful to the SoC team. Developing the driver software on a host workstation rather than 

on a simulated embedded core enables the team to gain development efficiencies using native software-development 

tools.  

As more techniques (eg portable stimulus and embedded software) are included in the verification process, 

automation and methodology are increasingly necessary to deal with the additional complexity. This paper has shown 

how PSS can be grafted onto an existing RTOS-driver framework at the IP level to automate construction of key PSS 

structures at the SoC level. While this paper has chosen to use the Zephyr RTOS, it is believed that the concepts should 

translate to other OS and RTOS frameworks. Having driver firmware available for key IP at the beginning of the SoC 

verification process is a key enabler for achieving optimal value from applying PSS for SoC-level test creation. 
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