
Case Study of Verification Planning to
Coverage Closure @Block, Subsystem and

System on Chip Level
Paul Kaunds, Revati Bothe, Jesvin Johnson

© Accellera Systems Initiative 1

Credits

• All EDA flow/methodology diagram credits goes to respective EDA
Vendors.

© Accellera Systems Initiative 2

What will you learn

• Metric Driven Verification flow and Best Practices at Planning,

Development and Execution stages

• Verification Methodologies, Challenges faced and lessons learnt

during verification at block level, subsystem level and system on

chip level

© Accellera Systems Initiative 3

© Accellera Systems Initiative 4

© Accellera Systems Initiative 5

© Accellera Systems Initiative 6

Metric Driven Verification Phases

• MDV consists of the following phases:

– Verification Planning Phase

– Verification Environment Development Phase

– Test case development and Coverage closure Phase

• Each phase is signed off based on a standard sign-off document for that
phase.

© Accellera Systems Initiative 7

Planning Phase

• Defines the strategy for verifying the design under test.

• Two documents are developed during this phase

– Verification Strategy Document

– Verification Plan Document

• These documents are reviewed by the relevant stake holders and are
signed off based on the planning phase sign-off document.

© Accellera Systems Initiative 8

Verification Strategy Development

• Verification approach like Constrained random, Usecases, Directed
testcases

• Verification Environment block diagram

• Reuse of External and Internal VIPs/UVCs/Sequence library/Tests

© Accellera Systems Initiative 9

Verification Plan Development

• Plan links detailed feature lists to cover points, checkers and testcases,
which allows tracking of progress and measuring against the plan.

• Spec Annotation

• It is imporant to categorise the plan according to the milestones like for
example "pre-alpha" , "alpha", "beta" , "beta with verification" and
"final" for better project tracking. It also helps to deliver with definitive
understanding of risks. These milestone would provide clarity on the
status of the design and the level of verification. Usually done setting
perspectives/filters within the verification plan.

© Accellera Systems Initiative 10

Verification Plan Milestone
Milestone Status

Pre-Alpha Early RTL Design stage and basic testbench architecture
development , clock and reset checks.

Alpha Testing register interfaces. Plan reviewed. Verification at
60 %

Beta RTL design almost complete and ready for code freeze.
Tests memory map of the design and basic features of
the design . Internal review of testbench architecture
and test sequences and testcases.

Beta + Verification RTL frozen. Verification at upper 90%

Final Verification 100% .

© Accellera Systems Initiative 11

© Accellera Systems Initiative 12

© Accellera Systems Initiative 13

Verification Architecture Development(1)

© Accellera Systems Initiative 14

Verification Architecture Development(2)

Review Process of Planning Phase

• Based on verification sign-off document.

• Sign off document lists a number of tasks that need to be completed to
properly sign-off this phase and it is filled by stake holders.

• Architect, Project technical Lead, Verification engineers and Design
engineer reviews sign-off document.

• First review is called by verification engineer verifying that block.

• Can be repeated a number of times to make sure all requirements of the
sign-off document have been accomplished.

© Accellera Systems Initiative 15

Planning Phase: Review Sign Off Tasks (1)

© Accellera Systems Initiative 16

Planning Phase: Review Sign Off Tasks (2)

© Accellera Systems Initiative 17

Development Phase

• Development of a number of all components as required by the UVM
methodology.

• Improve testbench reuse, code portability, and create universal high
quality verification IP.

© Accellera Systems Initiative 18

Review Process of Development Phase

• Based on verification development sign-off document filled in by the
relevant stakeholders.

• Architect, Project Technical Lead, Verification engineer and Design
engineer are responsible for reviewing the development phase.

• Peer review from Verification Engineer is important.

• An early review is conducted to make sure that the environment is
consistent with the flow in place.

© Accellera Systems Initiative 19

© Accellera Systems Initiative 20

© Accellera Systems Initiative 21

Review Process of Execution Phase

• It is based on verification execution sign-off document which is filled in
by the relevant stake holders.

• Review if all coverage goals are met

• Review if all SV implemented cover points are in sync with the
verification plan.

• Multiple reviews can be conducted to make sure all required tasks are
accomplished.

© Accellera Systems Initiative 22

© Accellera Systems Initiative 23

© Accellera Systems Initiative 24

Block Level Verification: Planning (1)

• Aims to target specified feature of the IP

• Ensure protocol compliancy as IP gets integrated to a larger
system (e.g AMBA)

• Performance and maximum throughput testing

• Testcases categorized into:

– Exhaustive IP level test

– Reusable integration test

© Accellera Systems Initiative 25

Block Level Verification: Planning (2)

• Reusable test structure

© Accellera Systems Initiative 26

Testcase

Testbench (e.g RTL tb / class based tb / IP level
bench / SS level bench / SoC level bench)

Platform (e.g Simulation, emulation ,FPGA)

Block Level Verification: Planning (3)

• IP level verification engineer identifies the list of testcases that are
intended to be promoted to test the integration of the IP within a larger
system. Does not necessarily cover key features.

• The functional testcases exploring the features of the IP and corner
cases may/may not be reusable at system level as these testcases are
beyond the scope of a system level verification and is most like be run
only at IP level.

© Accellera Systems Initiative 27

Block Level Verification: Planning (4)

• Verification engineers prepares a strategy document from the original
IP's specification and uses it to develop the verification plan which will
then be used to track progress of verification and sign off.

• If time and licenses are of constraints , the extreme and nominal
operational modes will be targeted instead of a permutation of all
possible usage scenarios.

© Accellera Systems Initiative 28

Block Level Verification: Development (1)

Testcase Reusability

• The main thread that runs the simulation implements a list of
"immutable tasks", e.g. clock setup, IP configuration , functional testing,
reporting etc. These tasks wont change regardless of the platform or
the testbench that the IP is used.

• The "immutable tasks" consists of a list of "interface tasks" whose
behavior could change based on the platform/testbench running the
test. (conceptually similar to Polymorphism in OOPs) E.g. a clock setup
task at IP level is simply toggling a signal in the testbench, where as in a
SoC this is more elaborate process like configuring PLL's etc. This could
also vary between simulation , FPGA OR emulation

© Accellera Systems Initiative 29

Block Level Verification: Development (2)

• Deploying SCEMI transactors within test-environment provides benefit

of targeting various platform e.g. Simulation, FPGA and emulation at an

earlier stage of project lifecycle with maximum code reuse.

• System Verilog assertions can be used to predict maximum latency

thereby a potential system lock up can be caught.

• Add hooks within test sequences for error injection and recovery.

© Accellera Systems Initiative 30

http://www.accellera.org/downloads/standards/sce-mi

Block Level Verification: Development (3)

• All identified/planned item should have a place holder item within the

verification plan and should by default report as 0% coverage (unless

addressed).

• Use Covergroup's, SVA or other functional coverage metrics to report

progress instead of testcase pass/fail figures

© Accellera Systems Initiative 31

Block Level Verification: Execution (1)

• Regular scrum meeting with Designer to discuss about progress, bugs, debug

support etc.

• All bugs / deviation from spec gets raised via bug tracker.

• Using Continuous Integration (C.I) systems like Jenkins and using the results

from C.I for reporting will offload these activities from verification engineers

and will provide an unbiased progress of the project.

• The test plan, verification strategy document and the test environment has to

be reviewed at an earlier stage in the project by more experienced engineer

OR by Verification lead of the project.

© Accellera Systems Initiative 32

Block Level Verification: Execution (2)

• A handover document should be maintained from an earlier stage of the
project.

• The verification engineer should be notified of any updates to design.

• Pre-verified legacy modules used within IP i.e. FiFo , RAM's can be
excluded from code coverage report (Block,Expression,FSM),
although port toggle coverage of these components is required to
prove integration of these IP's.

© Accellera Systems Initiative 33

Block Level Verification: Execution (3)

© Accellera Systems Initiative 34

• Test pass rate

Time / Jenkins build count

P
a

s
s
 (

B
lu

e
),

 F
a

il
(R

e
d

)
a

n
d

n

o
t

c
o

m
p

le
 (

y
e

llo
w

)

• The example picked is an IP which decodes CMOS camera sensor data and
streams to an ISP

• The scripts used for compiling, simulating and running regression were non-
generic, hence adding an additional challenge for new engineers joining the
project to learn and maintain a new flow. Generic scripts should be used in the
future.

© Accellera Systems Initiative 35

Block Level Verification:
Challenges and Lessons learnt(1)

• The IP was purpose build for a given sensor model, later adding capability to
support a variety of sensors. However the behavioral model of the CMOS sensor
modelled only for the specific model of the sensor there by making it difficult to
add support for other sensors types. Using a UVM agent as sensor BFM would
have made this transition easier

• Intermediate points was created in C model to improve Debugability.

© Accellera Systems Initiative 36

Block Level Verification:
Challenges and Lessons learnt(2)

© Accellera Systems Initiative 37

• Functional correctness of overall application

• Interoperability of all the IP in the Subsystem

• Access to shared resources such as memory and bus structures

• Use case requirements

• Overall performance of the system

• Parallel external interface behaviour

• Connectivity of all blocks and sub-systems

Subsystem Level Verification Requirements

Subsystem Level Verification Planning

• Planning phase includes preparing verification strategy in terms of Test
plan, Coverage plan and Assertion plan.

• Verification of complex subsystems requires all micro level data to be
collected at a common place for better tracking.

• Automating the whole verification tracking process is highly
recommended

© Accellera Systems Initiative 38

Verification Plan

• Example being used here is a Image Processing subsystem verification
solution

• Verification was focussed on interconnectivity and interoperability solution

• USE CASE based testing and performance testing

• We have used Synopsys's Verification Planner

• While creating a plan we made sure to add a feature and description for
every item and ensured that each lowest leaf feature has a measure with a
correctly associated metric

• Based on the priority each measure is assigned a milestone like Alpha, Beta
Final etc . These milestone corresponds to the quality of the RTL to be
released

© Accellera Systems Initiative 39

© Accellera Systems Initiative 40

• Testcase Promotion :

– Some testcases are promoted from the IP Level to Subsystem Level

– Some of the testcases are promoted from Subsystem Level to SoC Level

• Integration Tests and Functional Tests :

– The Subsystem provides Integration tests which can be promoted at the Soc
Level .These are C testcases which can be reused in SoC Level Environment

– Functional testcases are present to check the basic functionality of the IPs

Testcase Re-usablity

Representative Subsystem Block Diagram

© Accellera Systems Initiative 41

Verification Environment Development (1)

• The environment comprised of SV test components, SV Assertions ,UVM
Components and C test based infra structure to accomplish the
Verification

• The generic components are BFMs for the bus interfaces like AXI4
interfaces which can be configured as masters or slaves.

© Accellera Systems Initiative 42

Verification Environment Development(2)

• All the memory interfaces are connected to the AXI slave transactor
which is configured in the Software , all the transactor components are
synthesizable. This is done keeping in mind the portability to emulator.

• AXI UVC can be also be used in the environment. The verification
environment contains a common SV memory for the Image Processing
and the other intermediate block

© Accellera Systems Initiative 43

Verification Environment Development (3)

• The Functional Coverage model had Write and Read latencies, use case

coverage, Subsystem Address Coverage, Memory Range Coverage, and

Clock Frequency Coverage.

• Toggle Coverage was collected at the top level.

• Regression setup and flow was implemented using internal flow. Weekly

regressions were run and monitored.

© Accellera Systems Initiative 44

Verification Environment - Reference
Generation(1)

• The subsystem works on the pre-processed data.

• The pre-processed data is generated by using set of scripts

that operate on the C Model which is called the Toolchain

• The toolchain splits the input image .dat files into nibbles and in

the simulation this given to the Tx Driver to drive data onto the

input interface.

• RTL output captured
© Accellera Systems Initiative 45

Verification Environment- Reference
Generation (2)

• Toolchain is expected to generate intermediate IP's output

data and Meta data in *.ppm format, which will be used to

compare

• The final output of the ISP Subsystem will be compared to that

is generated by the toolchain .

• The pre-processing of the image data reduces the rather

long simulation and debug cycles

© Accellera Systems Initiative 46

© Accellera Systems Initiative 47

• The verification was mainly about the Sensor Rx's interoperability with

the Image Signal Processing block.

• USECASE with different frame sizes of 2K, 4K & 8K were chosen to

validate the overall working of the subsystem

• Toggle Coverage of the module interface and full coverage of glue

logic was measured and monitored

Execution of Planned Verification

Performance Analysis

•Performance Analysis was to make sure that the design will meet

its targeted bandwidth and latency levels . We have verified

– Minimum and Maximum read/write latencies using AXI UVCs.

– Buffer fill rates

– Data Frame rates

© Accellera Systems Initiative 48

Scoreboard and Checkers

• The Subsystem does not have a scoreboard. The reference

image and the output image from the RTL are compared using

the scripts

• Relevant checkers are present at all the interfaces

© Accellera Systems Initiative 49

Verification Sign Off Criteria

– All Integration, Usecases, Performance tests pass

– Toggle Coverage at the interfaces

– Full Code Coverage of the glue logic

– Bug Trend Analysis

© Accellera Systems Initiative 50

Verification Progress

• Listing the examples of metrics used to determine the verification
status/progress

© Accellera Systems Initiative 51

Categories Total Pass Weightage Pass % Notes

Usecases 12 9 5 75.00

Integration 33 33 1 100.00

Performance 14 7 1 50.00

Internal Block 12 3.5 1 29.16

Error/Corner 12 0 1 0.0

Code Coverage 100 98.45 1 98.45

Verification Status

© Accellera Systems Initiative 52

• Bug Trend Analysis over the period of verification cycle is shown below, on the X axis
is the days (dates) and on the Y axis is number of issues filed. Blue indicates total

number of issues, green is closed issues and red is outstanding issues

Verification Status

© Accellera Systems Initiative 53

• Test Pass Rate : This graph explains the test run stats, test pass stats, test
pass rate and cumulative coverage(functional + code).

© Accellera Systems Initiative 54

• Huge Simulation Time:

– Planned and developed debug points along the datapath

– Reference image was generated as the part of pre-processing step

– Comparison of the image and POLL checks were done as a part of post-
processing

Subsystem Level Verification:
Challenges and Lessons learnt (1)

© Accellera Systems Initiative 55

• Performance Testing: Started early on in the Verification Cycle to detect
the system level issues.

• Improve Debug :

– Short frames with reduced height were used

– Add debug register bits and debug signals to improve verification and root cause
detection.

Subsystem Level Verification:
Challenges and Lessons learnt (2)

© Accellera Systems Initiative 56

• Planning Phase Review:

– The review of Vplan led us to correct some of the measures, which in-turn
helped the coverage numbers

– After the detailed review we had to add new features to some of the existing re-
usable verification components.

Subsystem Level Verification:
Challenges and Lessons learnt (3)

SOC Level Verification

• An SOC has one or more processors (CPUs, GPUs) at the heart of it . All
other logic constituting the system are around it. (peripherals,
memory/controllers, network etc)

• A processor executes a software program (and multiple layers in real
world) in terms of instructions. It will always fetch instructions from the
memory and execute them which will trigger the various logic around it
in the SOC

© Accellera Systems Initiative 57

SOC Level Verification

• Most of SOC level tests are in a high level language like C. It need not be
strictly C, but could be in other languages which all finally translates to
the correct assembly code and an object file that can be loaded in to the
memory.

• Python/Perl also popular to generate SOC level test cases.

• Replace the processor and some subsystems of SOC with behavioural
models then for that verification you can use SV/UVM.

© Accellera Systems Initiative 58

SOC Level Verification Flow

© Accellera Systems Initiative 59

Top Level Verification Requirements

• Functional correctness of overall application

• Interaction of all module and sub-systems

• Access to shared resources such as memory and bus structures

• Operation with realistic clock and power domain behaviour

• Overall performance of the system

• Parallel external interface behaviour

• Connectivity of all blocks and sub-systems

© Accellera Systems Initiative 60

Vertical, Horizontal & Diagonal Reuse

• Horizontal reuse – one SOC to derivatives

• Horizontal typically means using a verification component in a different system or project

but at roughly the same level of abstraction and with the same functional role.

• Vertical reuse – IP to SOC

• Vertical reuse means using a verification component in a different hierarchy level, usually

with an implied change of role.

• Diagonal reuse – various level of abstractions(Simulation, Emulation, FPGA, Post Silicon)

© Accellera Systems Initiative 61

Vertical, Horizontal & Diagonal Reuse Advantages

• Additional checks, stimulus, coverage and messages

• Detecting more bugs

• Helps speed up debug for other system-level defects by providing
improved internal visibility and enhanced bug isolation

• Huge Time and Cost savings.

• Reuse of stable code and improve confidence in interoperability of
protocols like AMBA, USB, PCIe

© Accellera Systems Initiative 62

Generic Transactors

• Promotes resuse across Platforms (simulation,emulation,FPGA e.t.c) and
between Block, Subsystem and SOC level testbenches

© Accellera Systems Initiative 63

Testcase
Custom SW
API layer

Standard
SCEMI API's

EDA SCEMI

implentation
(platform specific)

Generic
transactors DUT

Block level verification in System level TB

© Accellera Systems Initiative 64

SVP: UVM <==> C communication (1)

• We can read/write any register or memory location which can be
accessible by Proc (C code), using SV.

• We can pass valuable information back and forth from Proc to UVM Env
and vice versa, to achieve synchronization between the two. This will be
very useful in generating complex SoC scenarios.

© Accellera Systems Initiative 65

SVP: UVM <==> C communication (2)

Alternative Methods

• Assuming that your C/ASM is running on a CPU inside the SoC, a

common technique is to have some GPIO ports on the SoC connected to

"registers" in the testbench. Your BFM would be triggered by the data

written into the registers when the C/ASM test wants to control the

BFM

• Monitor to SRAM access generate different events.

© Accellera Systems Initiative 66

SOC Level Verification: Planning (1)

• Usecase scenarios need to be discussed with all stake holders and
mapped

• Performance/Error/Corner case scenarios need to be discussed with all
stake holders and mapped.

• Performance features like maximum and minimum latency at
Interconnect/NOC/DDR interface needs to be considered

• Buffer fill rate at various stages help to track the performance and
identify any system issues.

• Maximum clock rates at various levels needs to be discussed and
frozen.

© Accellera Systems Initiative 67

SOC Level Verification: Planning (2)

• Simulation time has to be considered while planning Usecases

• Debug ability has to be considered while planning initial tests and order
of execution.

• Area of concerns like new module developed has to be stressed first.

• Module/Subystem/Clocks/Resets integration needs to be considered

• Reusability of testbench components/C
Testcases/VIPs/Sequences/Checkers from Subsystem/module level has
to be considered

• Bootup modes and short Boot up modes needs to be planned.

© Accellera Systems Initiative 68

SOC Level Verification: Development

• The environment comprised of VIPs, SV test components, SV Assertions,
UVM Components and C test based infrastructure to accomplish the
Verification goal.

• The generic components are BFMs for the bus interfaces like AXI4
interfaces which can be configurable as masters or slaves.

• All the development is carried out using the best practice rules.

© Accellera Systems Initiative 69

SOC Level Verification: Execution

• The execution phase included running the created Use cases,
debugging and collecting the coverage.

• Performance Analysis was carried out by running huge stimulus
with minimum and maximum latencies at Interconnect/NOC/DDR
interfaces.

© Accellera Systems Initiative 70

SOC Level Verification: Execution

• The execution phase included running the created Use cases, debugging
and collecting the coverage.

• Performance Analysis was carried out by running huge stimulus with
minimum and maximum latencies at Interconnect/NOC/DDR interfaces.

© Accellera Systems Initiative 71

© Accellera Systems Initiative 72

• Debug:

– Short frames with reduced height has been used

– Planned and developed debug points along the Datapath

– Added debug register bits and debug signals to improve verification and quick
root cause detection.

• Huge Simulation Time:

– Reference image was generated as the part of pre-processing step

– Comparison of the image and POLL checks were done as a part of post-
processing

SOC Level Verification:
Challenges and Lessons Learnt (1)

© Accellera Systems Initiative 73

• Performance testing was started early to detect system level issues
early in life cycle.

• VIP integration/bringup from multiple vendors

• C System testcases integration with VIP.

• Toggle coverage at IP interface was difficult with Abstraction of testcases
being high.

• Glue logic for integration needs full coverage and was difficult with
higher level abstraction tests.

SOC Level Verification:
Challenges and Lessons Learnt (2)

Verification Economics

• Verification plan is always done with constraints of available
time, budget and changing requirements.

• Focus on most important features to be verified.

• If Derivative chips, Prioritize verification of code which has changed.

• Use VIPs when possible to reuse the stability(of previous working
silicon), interoperability(like USB, PCIE standards) factors of VIP

• Use the stable UVCs when possible to leverage the previous
projects code/experience.

• Verification estimates are always dependent on the quality of
Specification and RTL

© Accellera Systems Initiative 74

Thank You

Any Questions?

© Accellera Systems Initiative 75

