

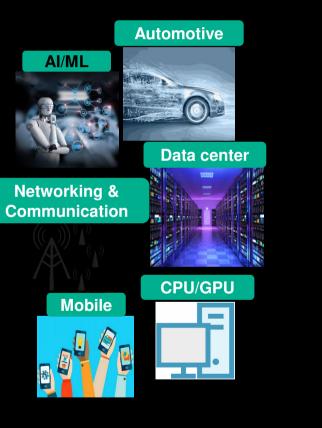
MUNICH, GERMANY OCTOBER 15-16, 2024

Calling All Engines - Faster Coverage Closure with Simulation, Formal, and Emulation

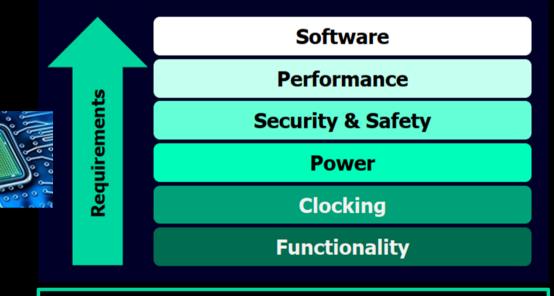
Yassine Eben Aimine, Product Architect Dirk Hansen, Application Engineer

Agenda

- The Case for Unified Coverage
- Simulation & Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A



Agenda

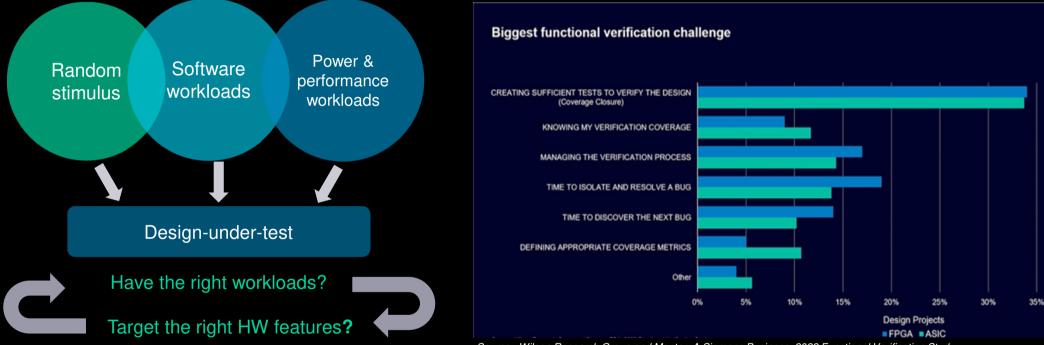

- The Case for Unified Coverage
- Simulation & Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A

Market dynamics drive new use-cases and requirements

Source: Wilson Research Group and Mentor, A Siemens Business, 2022 Functional Verification Study

Complexity in terms of functional verification and HW-SW integration is predominantly due to these increasing levels of requirements

Project impact


Decline in first silicon success and cost increase significantly affect TTM and business success

66 % Projects behind schedule 50-60 % Median project time spent in verification 76 % ASICs require 2 or 13 % more respins First silicon success on 10M-1B gates 62 % designs Logical/Functional flaws caused respins in design greater then 1B gates

Source: Wilson Research Group and Mentor, A Siemens Business, 2022 Functional Verification Study

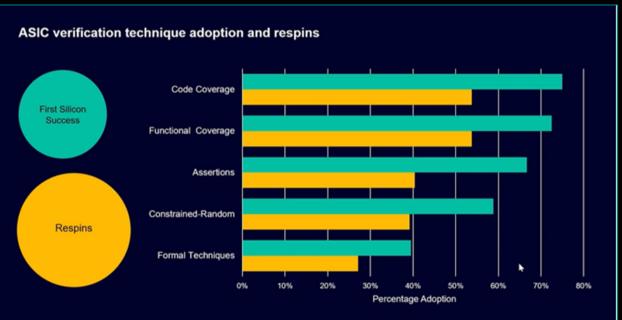
Understand the challenge to create the opportunity

Source: Wilson Research Group and Mentor, A Siemens Business, 2022 Functional Verification Study

Every project benefits from a robust coverage and assertion methodology

Why the need for coverage and assertion ? Metrics to measure verification progress and quality and productivity

Code coverage


• Design structure or implementation is covered

Functional coverage

Intent of the design or specification is covered

Assertion

- A given temporal condition holds or is covered
- Improve debug productivity

Leverage coverage & assertions to avoid bug escapes from block to system level

Source: Wilson Research Group and Mentor, A Siemens Business, 2022 Functional Verification Study

ASIC/FPGA verification effort

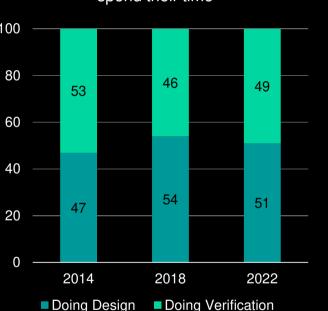
spend their time techniques 100 Code coverage 80 46 49 53 Functional 47% 60 coverage 40 Assertions 54 51 47 20 2007 Constrained-Random 2014 0 2022 2014 2018 2022 20% 40% 0% 60% 80% **Design Projects**

Test Planning Testbench Development

Creating Test and Running Simulation

Other

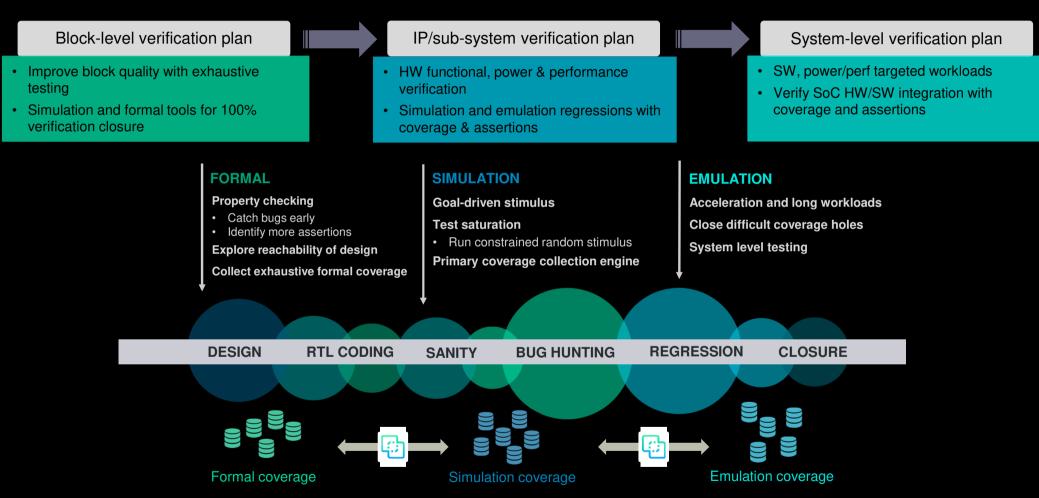
Debug


21%

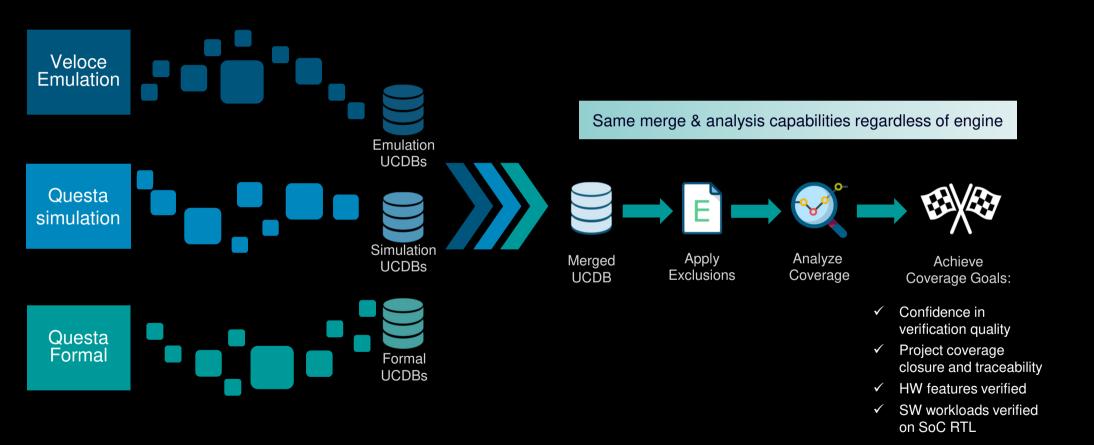
15%

Source: Wilson Research Group and Mentor, A Siemens Business, 2022 Functional Verification Study

ASIC adoption of dynamic


Where IC/ASIC design engineers

Coverage & assertion-based verification are growing requirements in emulation


Where IC/ASIC verification engineers spend their time

5%

An SoC level multi-verification phase and tool challenge Adopt the right verification engine for effective verification sign-off

Combining Questa Simulation, Questa Formal and Veloce emulation coverage

Agenda

- The Case for Unified Coverage
- Simulation and Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A

Purpose of Code Coverage

Determine the effectiveness of your testbench

- Does it exercise the HDL model (source code)
- Helps automate design process.

Use to improvement / gain confidence in the test suite

• Use in a manufacturing functional test

Shorten Lab Debug Time Expose corner case bugs

Purpose of Functional Coverage / Assertion covers

- The role of the functional coverage model is to ensure that the tests that the DUT passes have checked the design features for all of the relevant conditions.
- The testbench will exercise the features of the design. The role of the functional coverage model is to check that the different variants of those features have been observed to work correctly.
- Features may also be referred to as requirements or in some situations as stories.

Purpose of using both types of coverage

• All nodes inside the design have been stimulated

100% functional coverage means

• All possible combinations of input stimuli have been applied to the design, and the output is proven correct

100% code coverage and 100% functional coverage → DONE TESTING

Major Types of Coverage

Code Coverage	FSM Coverage	Functional Coverage	Assertion Coverage
 Did all statements, branches of code get exercised? Did all signals toggle at least once? Automated in the simulation environment A basic measure with little correlation to functionality 	 Did all the states and transitions get exercised? Automated in the simulation environment Typically included with code coverage Indicates transitions exercised, not functionally correct 	 Have all the important values/ranges of a signal been covered? Have sequences / transitions between signals been covered? Verification engineer must write covergroups, bind into RTL Are the covergroups written correctly? Do they cover enough? 	 How many times did the assertion get evaluated and pass, and fail? Designer must write assertions and cover properties Is the assertion implemented correctly? Check anything of value? Are there enough assertions?

Veloce Coverage & Assertion App – Addressing Coverage Closure Needs

Functional Coverage Have signals taken specific set of values? Have signals taken specific sequence of values?

Did interesting value combinations occur?

Code Coverage All statements/branches exercised? All signals toggled? All FSM states reached? All state transitions taken?

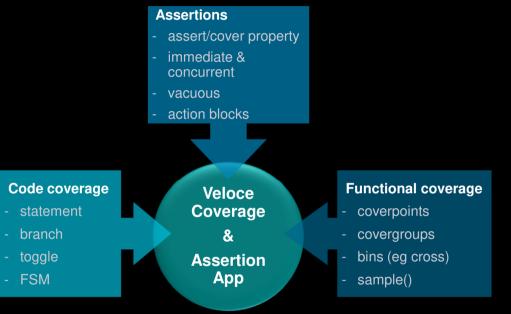
Coverage Metric Holes

Code / FSM / Assertion Coverage

- Functional dead code and unreachable FSM states/transitions
- Modes of the design that create dead code
- Time can be wasted trying to hit these holes!

Transaction/Structural Coverage

- Testbench doesn't stress the design enough
- Incomplete models don't exercise all transactions


Functional Coverage

Incomplete spec or planning, lack of knowledge/time

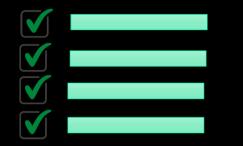
Proper test planning can mitigate some of these challenges

Static techniques such as Questa CoverCheck can minimize time to closure

Accelerate coverage closure and assertion-based debug

Re-use simulation coverage and assertions to achieve metric-driven verification goals in emulation

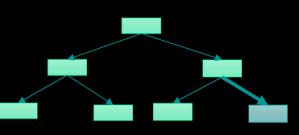
Run real workloads that effectively cover the system features and stress scenarios


Fast coverage closure & efficient assertionbased debug for complex system level bugs

Effectively merge coverage with simulation and emulation results for project level view

Code Coverage Metrics Supported by Veloce Coverage App

Statement Coverage


Check if all procedural statements in always blocks (clocked/combinational) are exercised

Toggle Coverage

Check if all signals have toggled from 0->1 and 1->0

Branch Coverage

Check if all branches in always blocks (clocked/combinational) are exercised

• if/case/conditional operator

Also check if none of the branches are taken (missing else)

FSM Coverage

transitions

State Coverage – Check if all states of the FSM have been covered

Transition Coverage – Check if all **possible** transitions between states have been covered.

Can also be determined by branch coverage, but a more intuitive representation

Methodology Considerations

- Once enabled, code coverage is automatic. No changes / additions to RTL required.
- While easy to "turn on everything," doing so can significantly impact capacity.
- Counter width settings and thresholds are global.
 - Be mindful of capacity increases and adjust counter widths accordingly.

Coverage Database: UCDB

- The Unified Coverage Interoperability Standard (UCIS) from Accelera defines the schema/format for storing Coverage information, known as UCISDB (or UCDB)
 - Manipulation via standard APIs, implementation is tool-specific
 - Questa fully supports this standard
- Integration in Veloce to generate Questa-compatible UCDB
 - All actions/manipulations possible with Questa-generated UCDB also possible with Veloce-generated UCDB
 - Reporting
 - Merging (Veloce-Veloce or Questa-Veloce)
 - Ranking
 - Questa Coverage ecosystem available to Veloce as well
 - vcover utility
 - Visualizer
 - Coverage Analyzer

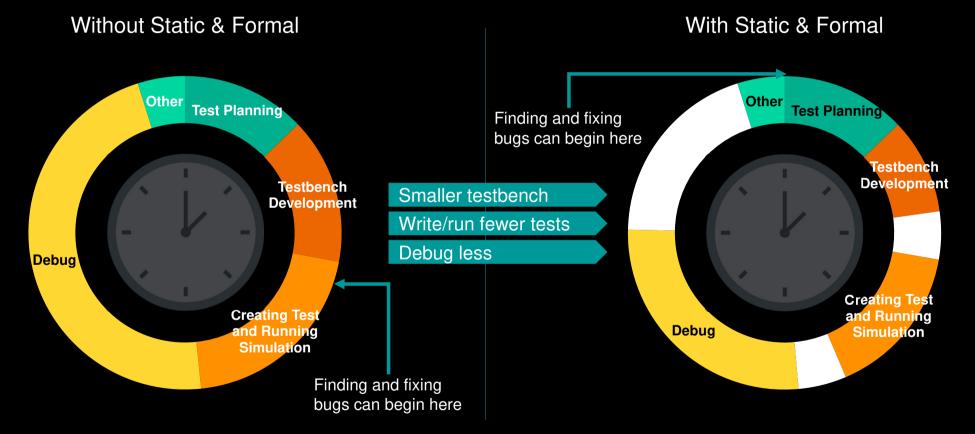
Unified coverage and assertion metrics

	Statement	Branch	Block	Expr/Cond (FEC)	FSM (State/Trans)	Toggle	Covergroup	Assert / Cover
Questa								
Veloce			C	C				
Formal								
		Supported Future Support						


Agenda

- The Case for Unified Coverage
- Simulation & Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A

Adding formal coverage is critical to success


Complementary with simulation, deliver unique abilities and acceleration

Formal adoption does more than increase simulation efficiency Finding and fixing bugs before testbench increases team agility

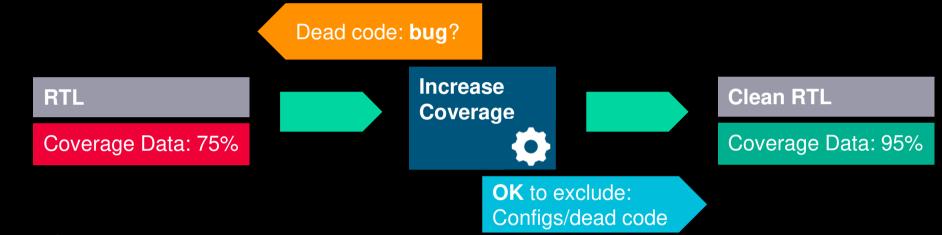
Source: Wilson Research Group and Mentor, A Siemens Business, 2022 Functional Verification Study

Reachability – simulation coverage closure

Questa Increase Coverage performs a reachability analysis for all code coverage items

Reachability provides design insights in form of:

- Dead code analysis
- FSM state and arc analysis
- Signal stuck at value analysis
- Witness trace
- Supports same 7 coverage types Questa Sim
 - bcefst and bin


Used to accelerate simulation coverage closure

- Tight integration with Questa Sim and UCDB
- Integrated with Coverage Analyzer

always @* if (a) else if (b) else	R = 2'b00; R = 2'b01; R = 2'b11;
•••	
always @*	
case (R)	
2'b00:	T = 1'b0;
2'b01:	T = 1'b1;
2'b10:	T = 1'b1;
2'b11:	T = 1'b0;
endcase	

Questa Increase Coverage Statically identifies unreachable code

Increase Coverage advantages

- Save man-months of effort closing coverage
- Tight integration with UCDB
- Automation of exclusions
- Identifies unreachable coverage targets
- Multi-vendor solution

Reachability and observability – formal code coverage

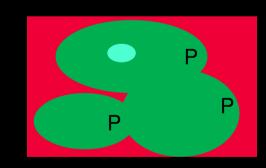
Questa Verify Property performs a reachability and observability analysis for all code coverage items

Reachability provides design insights in form of:

- Dead code analysis
- FSM state and arc analysis
- Signal stuck at value analysis
- Over-constraint analysis
- States and signals contributing to property proof

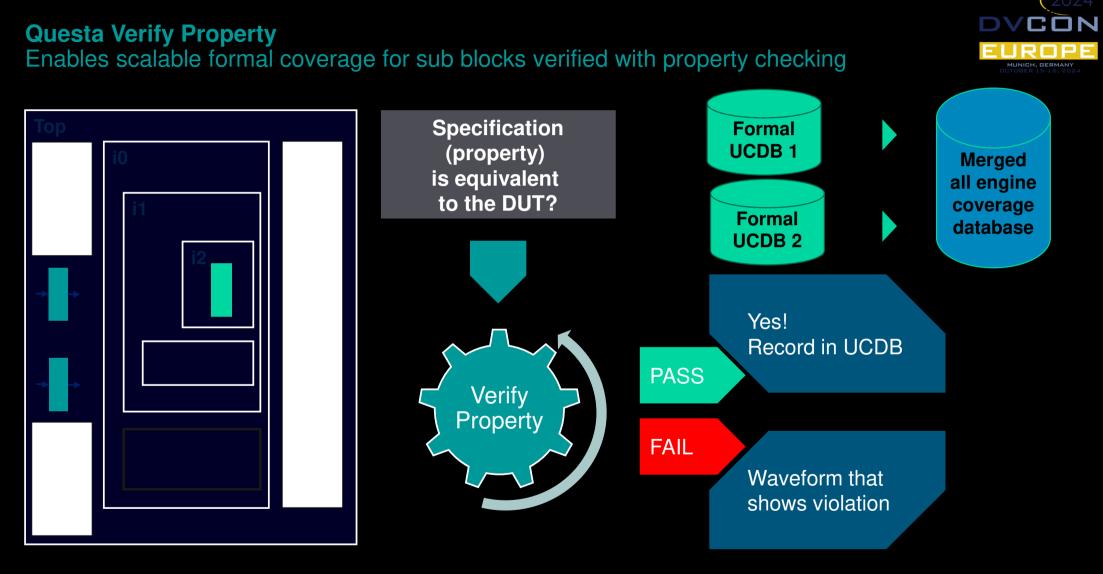
always @* case (sel)	
2'b00:	en = 1'b0;
2'b01:	en = 1'b1;
2'b10:	en = 1'b1;
2'b11:	en = 1'b0;
default:	en = 1'b0;
endcase	

Observability provides design insight in form of structural coverage contributing to property proof



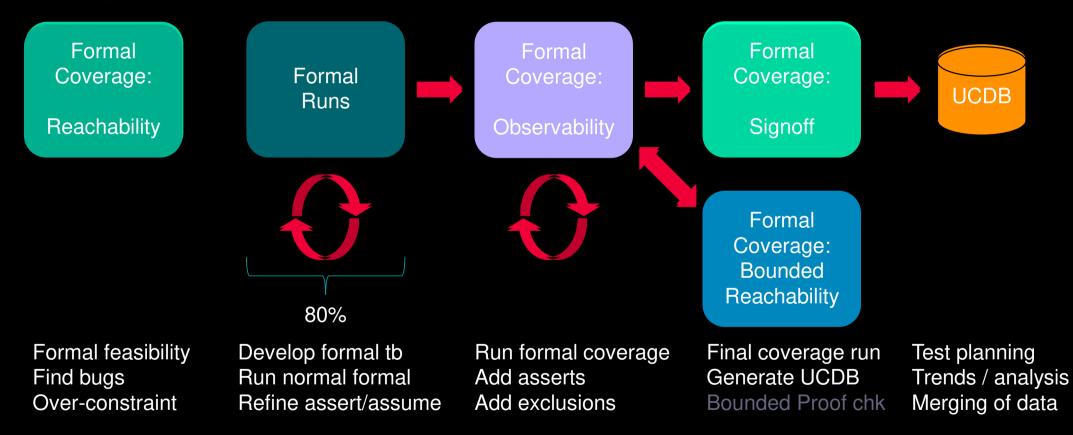
Formal signoff code coverage

Based on property proof coverage Familiar code coverage types with simulation


- Branch
- Condition
- Expression
- FSM
- Statement
- Toggle
- Covergroup bin

Based on two concepts:

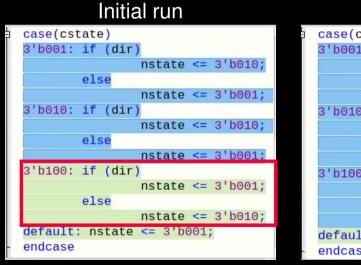
- Reachability
 - For a given property and its cone of influence, what logic is reachable from the inputs?
- Observability
 - For a given property, what logic was used to prove the property (is observable by a property)?
- 100% code coverage doesn't equal bug free RTL
 - Focus on what isn't covered, improve TB there

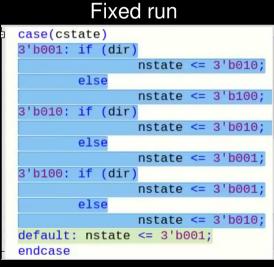

Reachable	Observable	Coverage Result
Yes	Yes	Covered
Yes	No	Uncovered
No	-	Excluded
Inconclusive	-	Uncovered

Verify Property formal coverage methodology

The 4 types of formal coverage: reachability, observability, bounded reachability, and signoff

Analysis: Reachability




Reachability analysis shows if a cover item (sbceft bin) is reachable from the design inputs

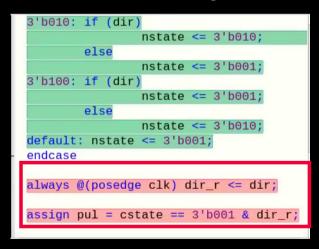
- Can be used for insight into the complexity of the design
- Can be used with or without properties
- Unreachable logic is a bug or can be excluded

Example FSM design:

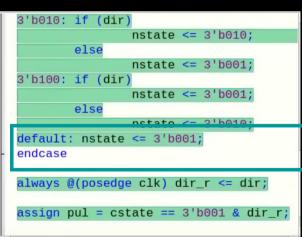
Initial run has unreachable FSM state and transitions, bug?

Reachability				
Summary (Recu	ursive)			
Coverage	Total	Unreachable	Inconclusive	Reachable
Branch	13	1	Θ	12 (92.3%)
Condition	0FF	OFF	0FF	OFF (N/A)
Expression	0FF	OFF	OFF	OFF (N/A)
FSM State	3	0	Θ	3 (100.0%)
FSM Transition	5	Θ	Θ	5 (100.0%)
Statement	12	1	Θ	11 (91.7%)
Toggle	OFF	OFF	OFF	OFF (N/A)
Covergroup Bin	Θ	Θ	Θ	0 (N/A)
Total	33	2	0	31 (93.9%)

Analysis: Observability

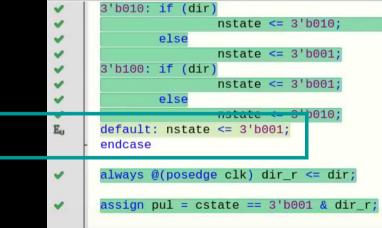

Observability analysis shows if a cover item (sbceft bin) is observable by a property

- Is used to determine where in the design to add more properties
- Is calculated from proofs or bounded proofs during the formal run


Example FSM design:

Add properties that exercise the uncovered logic, repeat till covered

Uncovered logic



Property added to cover it

bservability Summary For 1 Property (Recursive) Observable Total Unobservable Coverage (Proofs) 13 Θ 13 (100.0%) Branch OFF Conditio OFF OFF (N/A) OFF OFF OFF (N/A Expression FSM State 3 Θ 3 (100.0%) 5 (100.0%) ESM Transition 5 Θ Statement 12 10 (83.3%) OFF OFF OFF (N/A) Toggle 0 0 (N/A) Covergroup Bin Tota 33 31 (93.9%)

Signoff coverage: Obs + Rea

Verify Property debug: formal signoff coverage

19% signoff coverage with proofs, still a lot uncovered, need to add properties to uncovered areas

• Add properties that verify to the spec the logic that is uncovered (highlighted in red)

File Edit View Des	sign Tools Window Help				Use	to goto li	ne				
← · →	Look for	Dod		AnyEdge ▼ → 0 + 1ns ▼					Coverage Sum	mary - top	+ ×
Design -		Reu	+ 4 2			uncovere	a				K X
Search: Type Search	iexi (Fiess Eiller)			 ■ X ▼ ▲ E_U ▼ ▲ ✓ ▼ = 32	▲ ♥ ♥ ▲	Signoff					
Instance	Module	% Coverage	Coverage	32 € Case(sel) 33 ✔ 2'b00: rin <= 4'h	1;						
top	top ftb top		404 / 592	34 ✓ 2'b01: rin <= 4'h		Summary For 2	Propert	ies (Recur	sive)		
u ff	ff		4/12	35 ✔ 2'b10: rin <= 4'h 36 Eu 2'b11: rin <= 4'h			-	la companya	and the second second	Covered	Covered
- 📃 u_ff4	ff4		16 / 24	37 Eu default: rin <= 4	'h1;	Coverage	Total	Uncovered	Excluded	(Proofs)	(+Inconclusives)
	fifo fsm		207 / 241	38 - endcase 39 40 always @(posedge	clk or negedge rstn	Branch	66	6	17	7 (14.3%)	43 (87.8%)
				40 always g(poseuge 41 x if (!rstn)	1	Condition	22	2	7	3 (20.0%)	13 (86.7%)
				42 rino <= 4	'h1:	Expression	29	14	1	0 (0.0%)	14 (50.0%)
	What n	ronertie	es can I	X else 44 X rino <= r		FSM State	3	0	0	0 (0.0%)	3 (100.0%)
<u>n</u>	· · · · · · · · · · · · · · · · · · ·					FSM Transition	6	Θ	3	0 (0.0%)	3 (100.0%)
Coverage (Signoff Show: S	add to v]]] T X E ₀ ✔ ✔ E ⊕		Statement	75	15	16	7 (11.9%)	44 (74.6%)
∆ Line#	Add prop	erties a	nd rerun			Toggle	378	60	37	80 (23.5%)	281 (82.4%)
						Covergroup Bin	13	10	Θ	0 (0.0%)	3 (23.1%)
	Toggle	✓ (0->1) ✓ (1->0)				Total	592	107	81	97 (19.0%)	404 (79.1%)
- 🕥 3	Toggle Toggle	E _U (0->1)									
	Toggle	Eu (1->0)				I ,					1
Transcript 🛛 Cover	rage (Signoff) 🛛 Design Ch				Ite	rate until	0				

Coverage tracking and analysis Questa Verify Property

Coverage Analyzer and Visualizer supporting views

Will include higher-level tracking management systems (Polario

Formal coverage workflow

Tools Window Helr 🚯 🎧 🎟 🕏 🗟 👔 👔 🗟 す 🧎 Mnem 🔹 🗢 AnyEdge 🔹 🌩 0

Hier Instance -

Compile @ 🥵 📝 New Property 🏘 Filter: Type here <Ctrl+E

Exact

+ # # X P top.y - top

31

34

35

36 37

38

40

41 E

42 E

44

ile Edit View Coverage Summary

ftb top

ff4

fifo

Name

bind_top.a1

□ ____ u_fifo.bind_fifo.a_data_chk

u_fifo.bind_fifo.a_overflow ◎ ■ u_fifo.bind_fifo.a_underflow

earch: Type Sea

bind_top

u ff

_ _ u_ff4

🖬 u_fifo

🗉 🗾 u_fsm

- Debug done in Verify Property
- Tracking/Management same as simulation/emulation using the

Total Uncovered Excluded Covered (Proofs)

20

11 19

124 50 Covered

45 (80.4%

43 (93.5%

3 (100.0%

3 (100.0%)

13 (86.7%

13 (65.0%)

0 (0.0%)

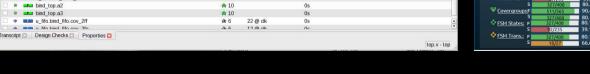
204 (62.2%)

16 (28.6%)

15 (32.6%)

3 (100.0%)

3 (100.0%)


3 (20.0%)

3 (15.0%)

94 (28,7%)

0(0.0%

137 (28 59

Restricted | © Siemens | Coverage Closure | DVCon Europe 2024

Questa PropCheck 2020.4-DAILY_BETA_200716 (...ropCheck/formal_cov_all/log/propcheck.db)

2'b00: rin

'b01: rin <= 4'h2

2'h10' rin <= 4'h4

default: rin <= 4'h1;

always @(posedge clk or

0. 0 0 1 2

rino <= 4'h1:

rino <= rin;</pre>

Health Radius

± 10 3 @ clk

0 10

*0

always @ case(sel)

endcase

if (!rstn)

else

1ns -

+ 7 X

• •

10 @ cl

Formal Coverage

Coverage

Statement

FSM State

Condition

Togale

Expression

ESM Transition

Branch

Summary For 5 Properties

378

11

12

on, etc.)	Coverage Summery	0.00% 52.77% 0.00%	0.0096 0.009 31.33% 0.009 0.0096 0.009 28.57% 58.33 (4.1)	26 ✓ 27 ✓ 28 ✓ 30 Xs 31 E 33 ✓ 33 ✓	sel << : else if (bin == sel <= : always @* case(sel) 2'b00: rin <= 4 2'b10: rin <= 4 2'b10: rin <= 4	2'b01; 2'b10; 2'b10; 2'b00; 'h1; 'h2;	* * * *
	Total Coverage	13% covered	Branches. 14/4 Conditions: 2/4 Expressions: 3/17 Fam States: 0 Fam Transitions: 0 Statements: 14/64	(14.28%) (17.64%) (3 (0.00%) (6 (0.00%)			
UCDB	1713% covered 22/87% m Transcript Coverage Summary Code Co	nssed overage Analysis 💿 📄	Toggles 48/140	0.0	25 0 50.0	75.0 top	100.0 a.v - top
c_merged.ucdb	Coverage By Instance		Home Covergroups	Design -			Dout C
• → Bin Distribution Đ → → → → → → → → → → → → → → → → → → →			Total Coverage		wergroup Coverage		

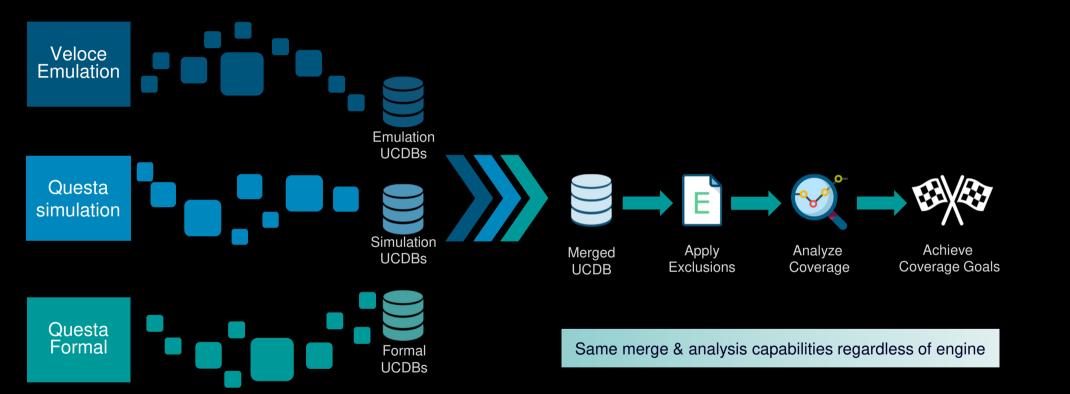
ାନ୍ମ - formal.ucdb 🧧 🛱 💮 ହୁ କୁ ଭୁ ହୁ ଭୁ ଭୁ ଭୁ ଭୁ ଭୁ କୁ 🖗 😣 📕

DU 🔹 🔹 🕲 Recursive 🔹 🎹 🚱

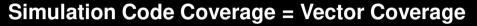
wire fdeg, fen

always @* if (bin == 2'b01)

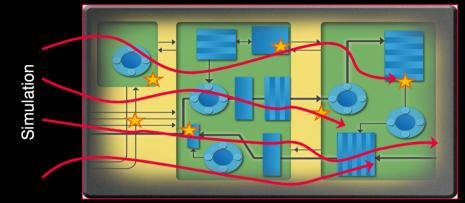
20 21 22 Xs 23 ✓

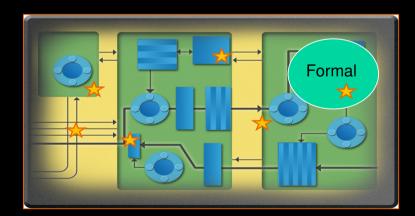


Agenda


- The Case for Unified Coverage
- Simulation & Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A

Combining Questa Simulation, Questa Formal and Veloce emulation coverage


Comparing formal coverage to simulation/emulation coverage



- Is based on vectors run through the design
- Whatever a vector hits is covered
- Can be logic related to / unrelated to what is being tested
- Property coverage = pass/fail
- For all vectors looking for what isn't covered
- Action: Run more vectors to hit what isn't covered

Formal Code Coverage = Property Coverage

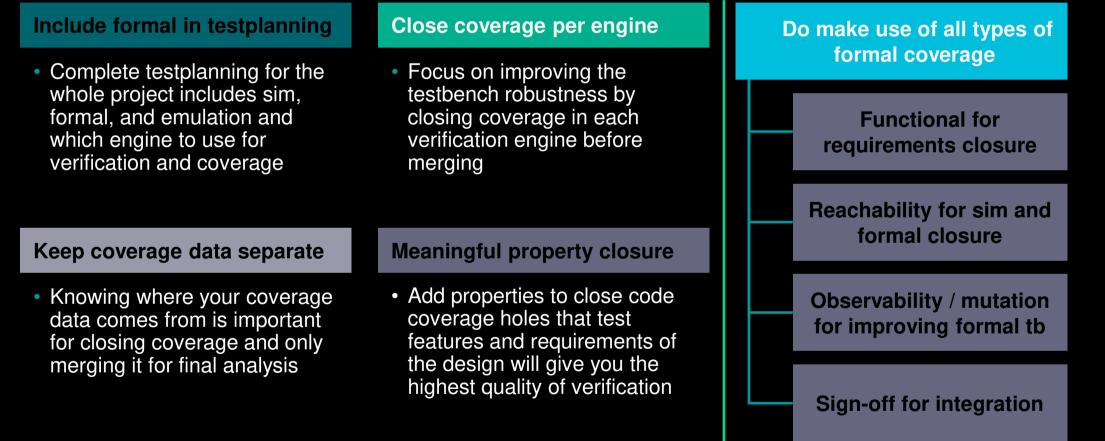
- Is based on proven properties in the design
- What logic is used to prove a property is covered
- Only related to a given property
- Property coverage = proven/fired/inconclusive
- For all properties looking for what isn't covered
- Action: Add more properties to hit what isn't covered
- Is a combination of reachability and observability Restricted | © Siemens | Coverage Closure | DVCon Europe 2024

Don't cross the streams Example comparing simulation and formal coverage

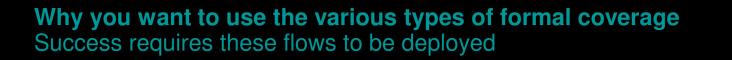
Each tool's coverage is there to point to holes in each tool's respective flows

- Mixing coverage masks this data (customers will still want to do it)
- The semantics of each is different, how it is calculated is different
 - Sim coverage is more optimistic when compared to formal coverage
- Example: Design has A,B,C outputs, 1 hot 0. Formal proves 1 hot property, sim does vectors for all 3
 outputs

Formal coverage from UCDB (s,b)

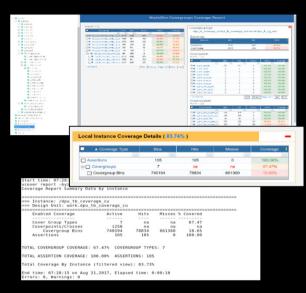

- Statement 5.45%
- Branch 0%

Sim coverage from UCDB (s,b)

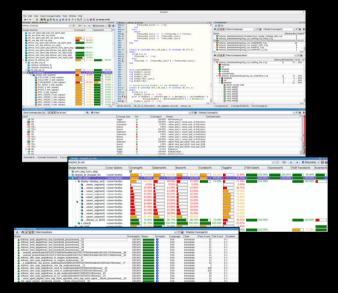

- Statement 92.94%
- Branch 88.23%

L Coverage Summary					+ 🛛 🗷
Design/Testbench Testplan					
Total Coverage 21.09% covered	Assertions: 1/1 (100.00%)				
	Branches: 0/34 (0.00%)				
21.09% covered	Conditions: 0/12 (0.00%)				
78.91% missed	Statements: 3/55 (5.45%)				
21.09% covered 78.91% missed	Toggles: 0/50 (0.00%)				
	0.0	25.0	50.0	75.0	100.0
Transc 🖾 Coverage Summ 🔯 DUs 🖾 Code Coverage Outl 🖾 Cover	rgro 🛛 🛛 Toggle Cover 🖾	Fsm 🖾	Directi 🖾	Assertion (Cover 🛙
≜ Coverage Summary					+ 🔹 🕫
Design/Testbench Testplan					
Total Coverage					
	Assertions: 1/1 (100.00%)				
				1	
	Branches: 30/34 (88.23%)				
193.72% covered	Statements: 79/85 (92.94%)				
93,72% covered 6.28% missed	0.0	25.0	50.0	75.0	100.0
Transc 🛛 Coverage Summ 🛛 DUs 🖾 Code Coverage Outl 🖾 Cover	rgro 🖾 🛛 Toggle Cover 🖾	Fsm 🖾	Directi 🖾	Assertion C	over 🖾

Recommendations for merging formal with simulation coverage Using both formal and simulation coverage to ensure robustness and correctness


Functional	Cone of Influence	Mutation				
 Assertions check design behavior Cover statements show parts of the design covered Both tied to test-planning and requirements 	 Structural COI based Very early code coverage Where to add properties Not generally used 	 Design mutation based Is property impacted? Very accurate code coverage Where to add properties Computationally intensive 				
Reachability	Observability	Signoff				
 Unreachable logic checking Bugs and configuration Used to increase sim code coverage Over-constraint checking 	 Property based code coverage Logic used to prove the property is observable by the property Early guide on where to add properties 	 Combination of observability and reachability Final coverage data to UCDB Integration with other verification engine data and coverage closure tools 				

Agenda

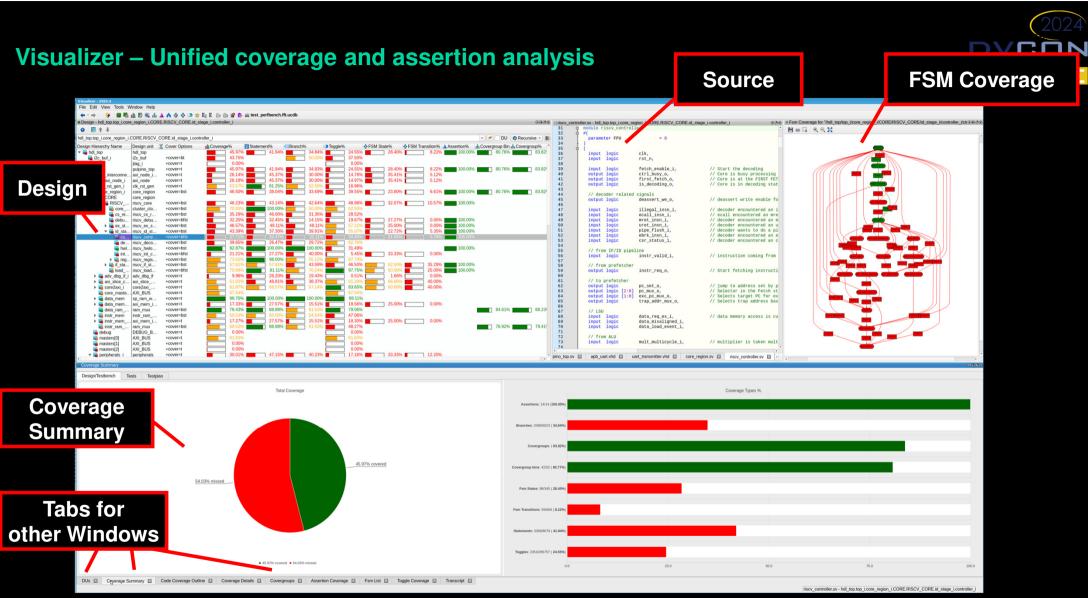

- The Case for Unified Coverage
- Simulation & Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A

Unified coverage and assertion analysis – Stand-alone to cloud-based collaborative workf

Text / HTML

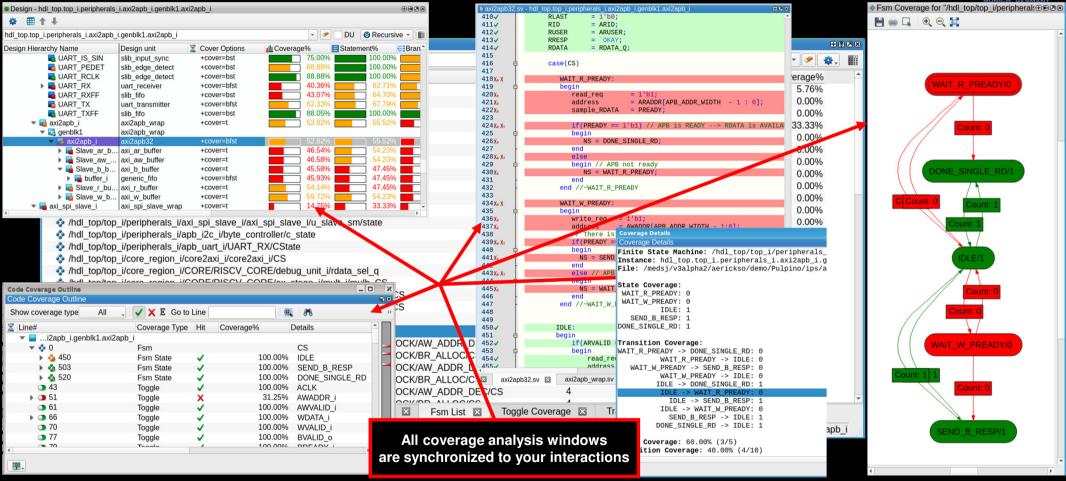
- Generate coverage reports to track
 verification closure
- Fast adoption but limited visualization and collaboration

Visualizer


- Unified debug & coverage analysis tool
- View source code and apply exclusions
- A standalone product flow

Coverage Analyzer

- Collaborative, web-ready coverage analysis flow
- Provide critical insights with coverage heat-map and network graphs


© Siemens 2024 | HAVAC2024 | Coverage & Assertions Demo | April 2024 | Siemens Restricted

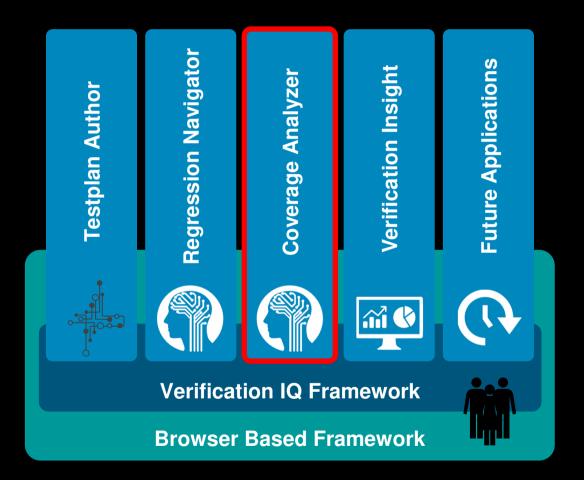
© Siemens 2024 | HAVAC2024 | Coverage & Assertions Demo | April 2024 | Siemens Restricted

Visualizer – Linked windows update automatically with interactivity

Unified coverage is more than just a merge of databases ...

Confidence in verification quality while meeting schedule targets

Project-level coverage analysis and traceability for robust verification closure and compliance



HW features verified from IP to system level to minimizing bug escapes into silicon

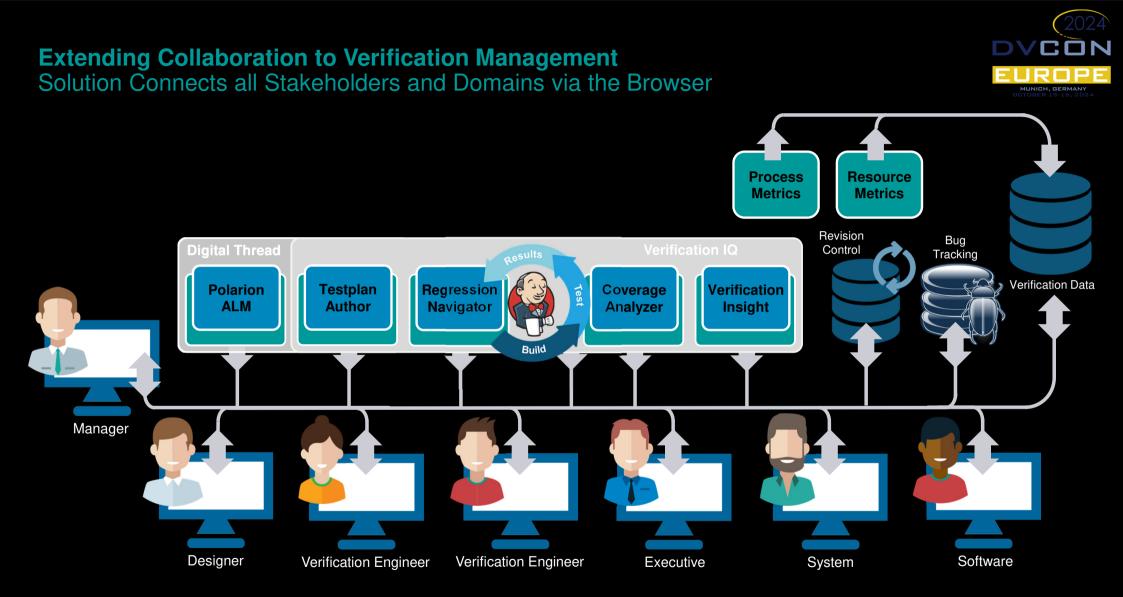
Real-world SW workloads for comprehensive validation against power/performance specs

Verification IQ – Collaborative Browser Based Solution Enabling Team-based Data Driven Verification

Process Guide

Plan & Requirements Driven Safety Critical Flows Lifecycle Management

Regression Running


Creation, Execution & Visibility Historical Analysis ML Acceleration and Efficiency

Coverage Analysis

Code/Functional/Testplan Hole, Test & Time Domains ML Powered Analytics

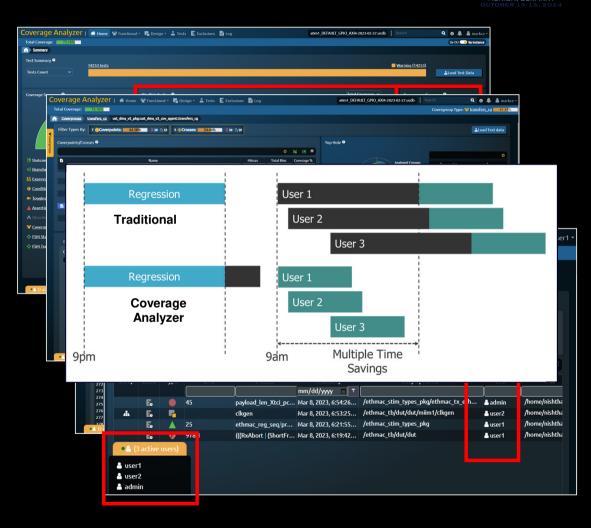
Data Analytics

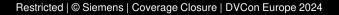
Metric Platform Project Dashboards Cross Analytics

Restricted | © Siemens | Coverage Closure | DVCon Europe 2024

Verification IQ Coverage Analyzer Collaborative Data-Driven Verification Closure

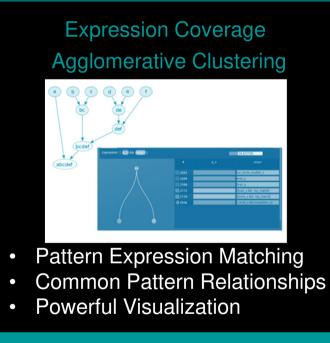
Coverage Closure Acceleration

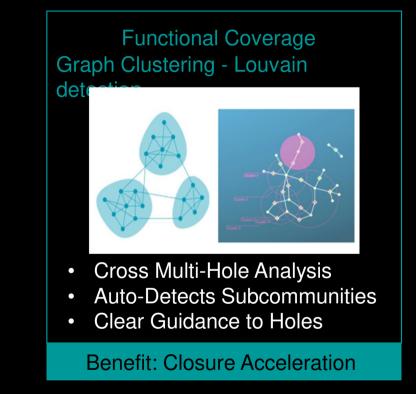

Browser-based Coverage Closure Analyze Code, Functional and Testplan Coverage Unified support of <u>Multiple Engines</u>


Power of Collaborative Data Analytics

Improved Coverage Model & Closure Understanding Analytical Navigation and Smart Visualization Adds User awareness with Questa Exclusion Flows

Application Benefits

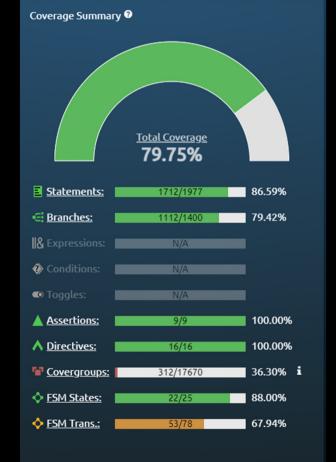

Brings Team Based Analysis to the Questa UCDB Unique Analytics for Accelerated Understanding ML Accelerated Coverage Closure



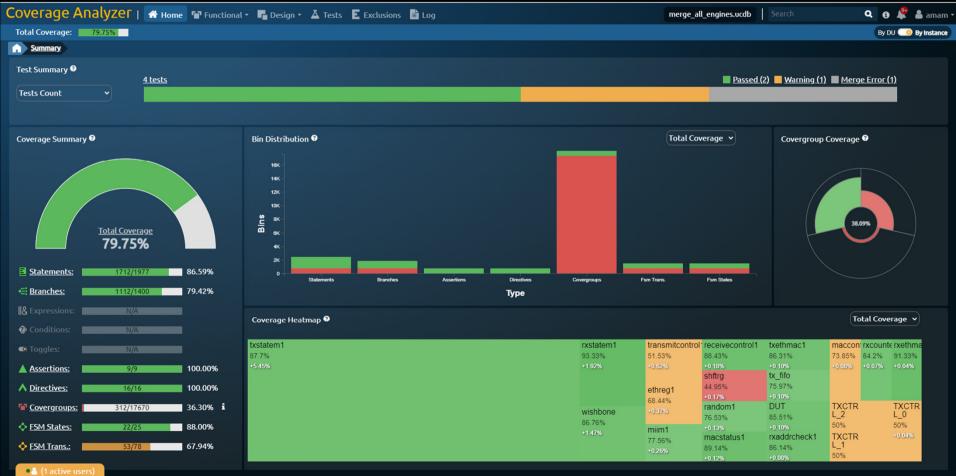
Pattern and Hole Analysis Guiding Closure with Analytical Visualizations Powered by ML

Benefit: Closure Acceleration

Viewing UCDB's in Coverage Analyzer Perform analysis on individual UCDB's or a merged UCDB with unified coverage


UCDB Browser										
Include Full Path						Ad	d			
File Name	Owner	Date Added	Users							
🛢 merge_all_engines.ucdb	amam	Oct 24, 2023, 9:10:31 am	• A (0 active users)				C			
🛢 formal_rx_fsm.ucdb	amam	Oct 24, 2023, 9:06:33 am	Not Active		ß	°°		Û		
🛢 formal_tx_fsm.ucdb	amam	Oct 24, 2023, 9:06:16 am	Not Active		ß	°°	Ø			
🛢 emu_traffic_test.ucdb	amam	Oct 24, 2023, 9:05:59 am	Not Active		ß	ø	C			
sim_register_test.ucdb	amam	Oct 24, 2023, 9:05:34 am	Not Active		ß	°°	C	Û		
			CA Instance Ready					×		
UCDB Diff		Coverage Analyzer Instance has started								
	Diffs are shown by comparing UC					CA Instance Ready Coverage Analyzer Instance has started				
UCDB #1		UCDB #2	Coverage Analyzer is Coverage summaries loaded for /wv/amam/unifiedCovge_all_engin					×		

Coverage Results from Unifying Coverage



Coverage Visualization and Navigation

Code Coverage

Design

Filter Types by:

hdl top DUT

Stal

• View RTL and code coverage that was hit/missed on a line or bin basis

||R Expressions

Conditions

Toggles

• Filter out different code coverages

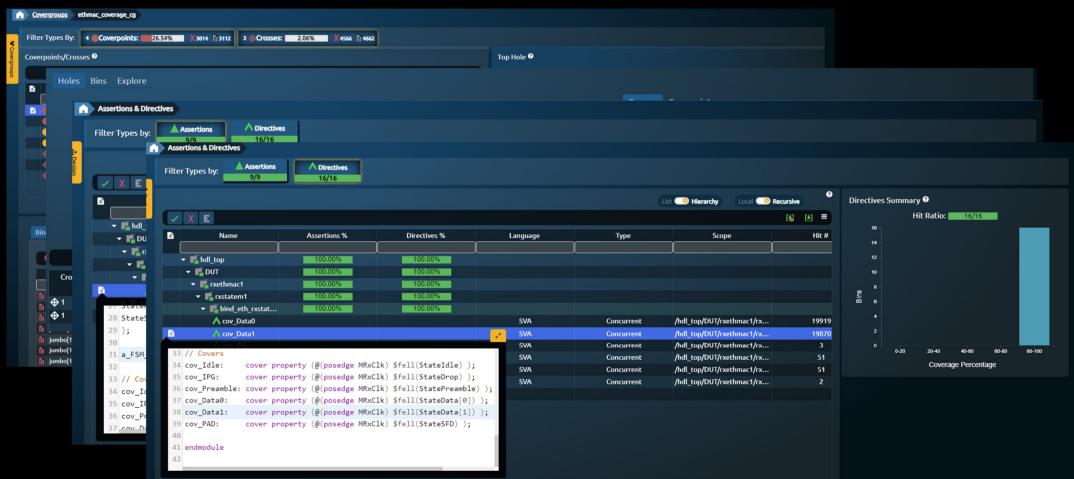
wishbone

en en

Branches

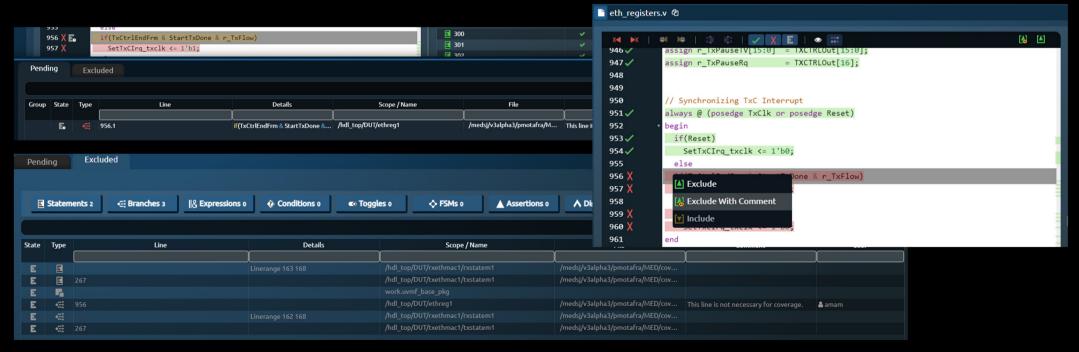
400/472

• View coverages for each instance/design unit


Desi	gn						List	Hierarchy	Local 💽	Recurs
Lail	Name	Coverage %	Stateme	Branch %	Fsm Stat	Fsm Tran	Assertio	Directive %	Covergro	
1.04	eth_phy_pkg	0.09%	_↓	L	L	l	l	l	0.09%	
	ethmac_env_pkg								1.60%	
	 echnac_env_pkg hdl_top 								1.00 %	
		90.71%	96.42%	85.00%						
	• Fethreg1		92.13%	80.23%						
	▼ ■ maccontrol1	85.50%	96.00%	75.00%						
	receivecontrol1		90.10%	86.76%						
	transmitcontrol1	51.53%	56.52%	46.55%						
	macstatus1		89.83%	88.46%						
	▶ 📕 miim1	78.08%	85.05%	71.11%						
	🕶 🌇 rxethmac1		96.07%	92.00%						
	arcrx 📲		100.00%	100.00%						
	rxaddrcheck1		87.09%	85.18%						
	📑 rxcounters1		90.62%	77.77%						
	🕨 🌇 rxstatem1		100.00%	100.00%	100.00%	70.00%				
	🕶 📊 txethmac1		93.24%	92.95%						
	📕 random1		94.73%	58.3 ³ %						
	txcounters1		95.65%	86.66%						
	txcrc 📲		100.00%	100.00%						
	txstatem1		100.00%	96.05%	81.25%	66.66%				

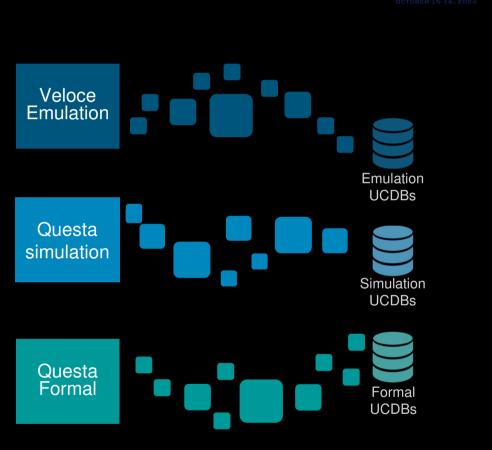
eth_wishbone	e.v @	E (589/	662) (400/472)	ۇ(0/0) ∞(0/0) 💠 (0/0) 💠	r (0/0) ▲(0/0) ▲(0/0)
X4 • × + •	et le 3 ki <mark>∕ X</mark> E ● III	Outl	ine 🔐 Patterns			P Enable Related Coverage
744 √ 745 √	WbEn <= 1'b1; RxEn <= 1'b0;	X	🗙 ei ie 🧕 🗸	XE		
746 ✓ 747 ✓	TxEn <= 1'b0; ram addr <= 8'h0;		Line#	Hit	Coverage	Details
748 🗸	ram_di <= 32'h0;	E 688		~		assign m_wb_bte_o = 2'b00; // Linear burst
749 ✓ 750 ✓	BDRead <= 1'b0; BDWrite <= 0;	 690 692 		~		assign m_wb_stb_o = m_wb_cyc_o; always @ (posedge WB_CLK_I)
751 752 √	end	E 694		~		WB_ACK_O <= (IBDWrite) & WbEn & WbEn_q BDRead
753 -	begin	 697 719 		~ ~		assign WB_DAT_O = ram_do; assign ram_ce = 1'b1;
754 755 •	<pre>// Switching between three stages depends on enable signals /* verilator lint_off CASEINCOMPLETE */ // JB</pre>	2 720		v		assign ram_we = (BDWrite & {4{(WbEn & WbEn_q)}})
756 X 757 ✓	<pre>case ({WbEn_q, RxEn_q, TxEn_q, RxEn_needed, TxEn_needed}) // synopsys parallel 5'b100 10, 5'b100 11 :</pre>	2 727		* *		assign ram_oe = BDRead & WbEn & WbEn_q TxEn & Tx always @ (posedge WB_CLK_I or posedge Reset)
758	begin	€ 729.	1	×		All False

FSM States


Functional Coverage Covergroups, Assertions, Directives (Covers)

Coverage Exclusions

- Add exclusions through GUI to any code, functional, or design units/instances
- 2 step exclusion flow provides a way to help prevent invalid exclusions from being applied
- Export and import existing exclusions for future use



Agenda

- The Case for Unified Coverage
- Simulation & Emulation Coverage
- Formal Coverage
- Coverage Merge
- Unified Coverage Analysis
- Conclusion and Q&A

Coverage - Call On Your Engines

- Coverage is not only simulation:
 - Take coverage credit for your formal proofs
 - Take coverage credit for emulation long / software payloads
 - Generate the same database from any source of coverage
 - Merge seamlessly within a unified environment

Questions

Thank You