
Caching Tool Run Results in Large-Scale 
RTL Development Projects

Ashfaq Khan

Intel Corporation



Outline
• Why cache (re-use) EDA tool run results - what does it even mean?

• What is special about large-scale projects when it comes to caching?

• Challenges and considerations in caching tool run results

• Various caching methods and their pros & cons

• Implementation details - with more focus on the proposed method

• Results

• Conclusion - including asks from the EDA industry



Caching EDA tool run results
• Observations:

• RTL Designers’ activities rarely involve changing ~100% of the design 

• Iterative EDA Tool runs with significant portion of the design unchanged

• Major opportunity for resource optimization!

• Caching EDA tool run results
• Re-use tool-generated content

• Reduce or eliminate certain tool runtime 

• Opportunity to save human/engineering resources

• Opportunity to save compute/machine resources

• Example:
• Re-compiling a design for simulation while only changing one line of code!



Caching scenarios - individual vs. team

Design Input
Tool Run
(Initial)

Tool Run
(Re-run)

Tool Run 
Results

Caching/Re-using tool run 
results by a single user

Design Input
Tool Run
(Shared)

Tool Run
(Initial/Re-run)

Shared Tool 
Run Results

Caching/Re-using tool run 
results within a team

Tool Run 
Results



Challenges in caching tool run results
• Content Re-usability

• Save & Restore vs. Re-generate

• Cache Hit Rate

• Cache/Re-use Infrastructure
• Correctness



Ensuring Correctness: Continuous Integration (CI) 

• Using cached content could add risk of using incorrect/stale content

• Best to have some guaranteed point in design where no cache is used 

• Having a CI infrastructure makes this simple
• But this can be done through other Quality Assurance mechanisms as well

Configure IP, generate 
collaterals etc. if needed

Make updates

Run tools

CI pipeline and 
acceptance check 

Repository 



Various caching methods
• Method 1 - Storing cache as part of the repository 

• Method 1A: Every user is allowed to store the content.

• Method 1B: Only one or more designated designers are allowed to store the 
content.

• Method 1C: The CI infrastructure handles the storing. 

• Method 2 - Storing cache outside of the repository
• Method 2A: Mechanism to detect changes in input to the tool, cached 

content is only retrieved when there’s no change

• Method 2B: User decides whether to retrieve the cache or not



Pros & Cons of various caching methods
Method Key Feature Pros Cons

1A: Store in Repo, 
by all users

Every user submits 
content to store

1. Cached content always 
available as part of the repo

1. Doesn’t work well 
for large/complex 
content.
2. Issue in CI while 
content merging

1B: Store in Repo, 
by designated 
users

Only designated 
users submit 
content to store

1. Cached content always 
available as part of the repo

1. Doesn’t work well 
for large/complex 
content.
2. Restrictive work 
model

1C: Store in Repo, 
by CI infrastructure

CI infrastructure 
stores as part of the 
repository (upon 
successful checks)

1. Cached content always 
available as part of the repo

1. Doesn’t work well 
for large/complex 
content.
2. Adds complexity in 
CI infrastructure



Pros & Cons of various caching methods
Method Key Feature Pros Cons

2A: Store 
separately, 
Decision to 
retrieve is based 
on automatic 
detection of input 
change

CI infrastructure 
stores (upon 
successful checks) 
in a separate 
location than the 
repository

1. Cached content available for 
copying for as long as project 
decides to keep the data
2. Scales to any type of collateral 
and any size
3. No major change in work 
model

1. Content retrieval 
involves difficult setup 
and high maintenance 
cost due to the need 
for automated 
detection of input 
change

2B: Store 
separately, 
Decision to 
retrieve left to the 
user

CI infrastructure 
stores (upon 
successful checks) 
in a separate 
location than the 
repository

1. Cached content available for 
copying for as long as project 
decides to keep the data
2. Scales to any type of collateral 
and any size
3. No major change in work 
model
4. Easy setup

1. Doesn’t track 
change in input 
collaterals.

Proposed 
Method



Implementation details of Method 1 and 2A
• Method 1A*, 1B*:

• Users save (check-in) manually

• Method 1C*:
• CI saves (delete content first then add, no merging of cached content)

• Cached content are excluded from consideration when users look for changes 
in their local repo

• Method 2A:
• Content retrieval is decided by checking if relevant inputs changed

• Before caching, a checksum of the inputs is created and saved

• Before retrieval, a checksum of the inputs is created and checked against cached content

• Identifying inputs can be done by manually creating it, or automatically identifying all 
inputs (tracing) and then excluding the ones that are not relevant

* May also use/need retrieval check like Method 2A for repeated runs



Implementation details of Method 2B [Save]



Implementation details of Method 2B [Restore]



Pseudo code for Method 2B
Define Cache_sections

Define section name

Define what content to copy (paths of files or directories relative to the top of the repo or run area)

Define any necessary pre-cache processing or post-retrieval processing

If User is CI then

Target_sections = all (CI copies all cacheable content to the central disk)

From_Dir = <User’s run area>

To_Dir = <Central Cache Disk>

Tag = <Create a unique tag>

Else

Target_sections = <User’s command line input; Default is all>

From_Dir = <Central Cache Disk>

To_Dir = <User’s run area>

Tag = <Retrieve the latest unique tag> (Git example: git describe --abbrev=0 --tags --first-parent --match “<unique tag pattern>”)

If User is NOT CI then

Exit if cached content does not exist for Tag in the From_Dir

For each Section in Target_sections

If User is CI then

Perform any pre-cache processing on the content to be cached for this Section

Copy content for that Section from From_Dir to To_Dir

If User is NOT CI then

Perform any post-retrieval processing on the content that was retrieved for this Section



Results
• Usage of the caching method 2B in a production project in Intel

• Cached Content: Various code generation needed before sim compilation

• Target audience: Validation engineers (~20)



Results
• Reduction achieved in building simulation models

• Generating the binary executable, does not include test runtime



Conclusion
• Caching or re-using EDA tool run results can significantly improve tool 

runtimes while reducing compute usage

• Net result is increase in designer productivity and faster project TAT

• What we need from the EDA industry:
• Tool run results should be self-contained (portable, reusable etc.)

• Tool should have a way to quickly evaluate how much of its input has changed

• Tool should be able to re-use existing tool run results
• Both directly from the current user work area and from a shared area

There’s a lot of untapped potential here for the 
EDA industry and users!



Acknowledgements
• Thanks to Narasimhan Iyengar for his support on the deployment of 

the proposed caching method at Intel.


