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Abstract- With the increasingly complex cache design in recent years, cache verification has been regarded 

more challenging. In this paper, we demonstrate a flexible cache model for cache verification. The cache model 

is built with a simple structure, but it can fulfill the most important verification criteria -- data correctness, even 

in a complex design. Extra 'location' information is added to the model for more precise checking and stimulus 

generation. 

 I.   INTRODUCTION  

RISC-V becomes a hot spot in recent years, and some of the applications require high performance data 

access. In order to satisfy this, a lot of tricky logics is created in cache design, and cache verification has 

become a challenging task. In this paper, we present a flexible and extendable cache verification model 

which supports multi-thread and multi-core structure.  

The cache model will be introduced in two perspectives: The basic structure to fulfill cache’s data check, 

then extra ‘location’ and other information for more precise verification. We named the model as CAMEL 

(CAche ModEL) in short, as the model’s characteristic is just like camel’s two humps. Besides CAMEL 

model itself, how it is used in testbench is also introduced in this paper. Our goal is to make cache 

verification more general and flexible.  

 

II.   DESIGN AND FORMER VERIFICATION ENVIRONMENT OVERVIEW 

A. Design Overview 

Our L1 Cache sub-system (L1SYS in short) is a part of multi-core and multi-thread RISC-V design, as 

shown in Figure 1(a). A group of internal buffers are placed in L1SYS to improve cache performance, as 

shown in Figure 1(b). All these buffers are working for the purpose of enhancing L1SYS’s performance.  

For example, to reduce the overall latency, when thread-0 encounters cache miss, that thread will be 

scheduled to a ‘shadow command buffer’ (SCB), fetching data in background, so that the design can switch 

to thread-1. Before the data is fetched from external memory, if thread-1 accesses the same address as the 

one in SCB, L1SYS will not send request to external memory again to avoid redundant bus access.  

SCB is used to hide the latency of cache miss, and move the long latency data access to background. 

Besides SCB, the store buffer (STB) stores write data from core temporally, the line filling buffer (LFB) 

and the eviction buffer (EB) store data from external memory temporarily. The purpose of these three kinds 

of buffers is hiding the latency of accessing SRAM to improve the performance of L1SYS. 

L1SYS design in multi-core scope is modified from the design in single core, and all the internal buffers 

already exist in single core scope. In multi-core scope, the internal buffers’ structure keeps the same as 

single-core, but their behavior changes a lot to fulfill multi-core’s ACE [1] protocol and deal with snoop 

requests.  

 
 (a) Overall design block diagram                                                     (b) L1SYS interfaces and internal buffers 

Figure 1. L1SYS related design block diagrams  
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B. Former Verification Environment Overview 

All these buffers improve the cache’s performance while they also increase the difficulty of cache 

verification. When a load miss command moves to background to fetch the data, the command’s execution 

process at background would influence the data value returning to the core, which influences the data 

correctness. Data correctness is the most important point of cache verification, so checking the background 

is necessary.  

In previous project, we modeled all these buffers in cycle-accurate manner in our testbench [2], which 

requires to hook up 5 VIP monitors on RTL external and internal interfaces, as shown in Figure 2(a). The 

previous testbench checking mechanism is based on MESH scoreboard. MESH scoreboard is a MediaTek 

in-house VIP, it is basically used in data flow checking. Each data flow checker is a stream, and many 

streams combine together to build a huge mesh, so the scoreboard is called MESH scoreboard. In the 

testbench, the data streams are separated into many sub-routines between internal buffers, and the summary 

is described in Figure 2(b). E1 and E2 in the Figure 2(b) mean the stages of L1SYS’s pipe, and ZAC, COP, 

ST and RD are the acronyms of the core’s instructions. The checkers are built based on the pipe’s timing 

and instruction types, and added at the input and output ports of the data streams to ensure the data flow’s 

correctness.  

For example, in Figure 2(b) the yellow columns indicate the data stream from LFB to SRAM, which 

corresponds to the data flow in Figure 2(a). The testbench simulates the LFB’s behavior and checks at LFB 

and SRAM’s interfaces, so that the data correctness between the 2 points can be checked. It is because the 

previous testbench simulates all the buffers, the data flow can be predicted and checked in continuous data 

streams.  

 
                         (a) The VIP agent view on testbench                                              (b) The summary of data streams checker 

Figure 2. Previous L1SYS verification environment overview 
 

Hence the internal buffers are cycle-accurate modeled, the verification environment is tightly coupled 

with RTL design. Each time modifying buffer model’s behavior costs huge efforts on both RTL designer 

and verification engineer. The checking mechanism can’t work until the testbench is modified well along 

with RTL design’s behavior, and the modification usually costs a lot of time.   

 

III.   CAMEL MODEL STRUCTURE 

In order to reduce the effort RTL design change brings to both RTL designer and verification engineer, 

an enhanced checking mechanism is proposed. The main idea of the mechanism is that the cache should be 

‘transparent’ for data access. Whether the cache exists or not, the design module between core and memory 

should guarantee the data correctness, regardless of how the cache is implemented. The basic instructions’ 

behavior in L1SYS is shown in Figure 3. 

 
Figure 3. The basic instructions’ behavior in L1SYS 



CAMEL model is created to mainly focus on data correctness check, and it has low dependency on 

design implementation at the same time. CAMEL model is organized in byte unit in ‘address vs. 

data+attributes’ view, which covers SRAM, all internal buffers, and even external memory, as shown in 

Figure 4.  

 
Figure 4. The Changes between Previous Buffer Models and CAMEL Model 

 

In a 32-bit address size memory system, the address range is from 32’h0 to 32’hffff_ffff, 4G address 

space. The cache only contains very few part of addresses compared to the whole address space, which is 

32kB in current project. The same as cache, CAMEL model only stores the valid or useful address and data 

into the model. When the bytes are evicted from cache, CAMEL will delete them at proper time.  

Cache line is the smallest storage unit in the cache design, but it can be configured to different size in 

different CPU projects. To extremely reduce the effort that design change might bring, CAMEL model 

chooses byte as the smallest storage unit of the model. Each byte corresponds to a unique address, and 

CAMEL also provides a set of configurable APIs for virtual ‘cache line’ views for convenient usage. The 

two views of the data in cache are similar to the two humps of a camel. Whichever view is used to query 

data, the data, just like the water in camel, is the same. 

Due to L1SYS’s multi-thread structure and tricky design, the ‘address-data’ mapping relationship is not 

always accurate. A typical example is shown in Figure 5. If thread-0 is executing a load instruction and 

cache miss, the instruction will be moved to SCB and switch to thread-1. CAMEL will register the address 

while valid is 0 before the data is read back from external memory. Then thread-1 might store data at time 

A or time B to the same address before core’s thread-0 gets the load data at time C. The stored data will be 

recorded in CAMEL and marks the dirty bit to 1. After the load data is got back from external memory, the 

corresponding bytes’ valid are written to 1. When thread-0 gets the load data, the load data can either be the 

old data from external memory, or the new data overwritten by thread-1. Both data are reasonable from 

software view in multi-thread design, while the RTL result is different based on the store data’s timing.  

 
Figure 5. The Flow Chart of a Multi-thread Data Access Example 

 

It takes a lot of effort to handle such kind of cases or even more complex cases between different threads, 

and the result might change depending on RTL implementation on different projects. CAMEL model takes 

an alternative way, it does not monitor the buffers’ detail behavior in cycle-accurate mode like RTL does, 

but stores all possible values of the same address under such case. Either value will be considered correct 

during verification. 



In the real L1SYS design, each load instruction will get only one piece of load data. But the checking 

mechanism based on CAMEL usually gives a group of data for reference at most times. Although the 

checking accuracy is declined by using CAMEL, the verification environment based on CAMEL can be 

quickly built up and easily modified for early phase checking. Using this method, we can provide a 

reasonable checking accuracy, without necessarily providing the cycle-accurate models to handle corner 

cases, and de-coupled with RTL design.  

 

IV.   LOCATION AND EXTRA INFO FOR PRECISE CHECK 

CAMEL model’s structure is introduced at previous section, it can check data correctness in a simple 

method with acceptable precision. Besides data check, other critical checkers like hit/miss check and the 

rationality of read/write command to external memory are also hard to check based on the basic CAMEL 

model structure.  

To solve the above problems, besides address and data, each byte unit will store an arbitrary number of 

extra attributes. One of the most important attributes is ‘location’, as the word implies, it represents where 

the data is locating. To solve the case between threads described in previous section, an extra attribute 

‘SCB data’ can also be added to the model, the amount is decided by thread number. After adding 

‘location’ and other extra information, the byte view of CAMEL model changes are shown in Figure 6.  

 
Figure 6. CAMEL model after adding ‘location’ and extra information 

 

The ‘location’ info can be ‘NA’, ‘SCB’, ‘STB’, ‘Ext. Mem’, ‘LFB’ and ‘SRAM’ based on current 

L1SYS design. The transfer process of the locations is shown in Figure 7. 

 
Figure 7. The transfer process of the locations in L1SYS 



The transfer process of ‘location’ is changed along instruction’s executing process. The default ‘location’ 

of each byte is ‘NA’, and it will change to ‘SCB’ or ‘STB’ depending on the instruction type sent from 

core. When the ACE read request corresponding to the byte’s address appears at L1SYS’s interface to 

external memory, ‘location’ of the byte will change to ‘Ext. MEM’. When the read request’s data is sent 

back, ‘location’ will change to ‘LFB’ and ‘SRAM’ along the allocation process.  

With more information added into CAMEL model, the model has 3 advantages compared to the basic 

one: (1) data check becomes more precise; (2) the rationality of command sent to external memory can be 

checked; (3) instruction from core’s hit/miss can be checked. The example in previous section changes to 

Figure 8. 

 
Figure 8. The Flow Chart of a Multi-thread Data Access Example Using CAMEL with Location 

 

A. Precise data check 

Thread-0 sends a load instruction (0x104) and cache miss. Then a byte unit is created with address 0x104 

and the ‘location’ would be default value ‘NA’. Since thread-0 misses the cache, the location of the byte 

unit changes to ‘SCB’. When the read request is sent to external memory, the ‘location’ of the byte unit 

would change to ‘Ext. MEM’, as shown in Figure 8 step-1. Then thread-1 sends a store instruction to the 

same address (0x104). As the address’s byte unit already exists and the coming instruction is stored, the 

data will be saved in the byte unit. After receiving the read data from external memory, CAMEL model 

will change the ‘location’ to LFB, and change the ‘location’ to SRAM when the cache line is written into 

the SRAM. Each thread will preserve an extra info ‘SCB data’ for SCB, which is the highlighted by blue 

column in Figure 8.  

‘SCB data’ is the data compared with RTL’s load data, and the order of the store instruction and the read 

data decides which data need to be placed in ‘SCB data’. The different cases are described on step-2 and 

step-3 in Figure 8. If the store instruction comes before the read data, ‘SCB data’ will include the store 

instruction’s data. If the store instruction comes later than the read data, ‘SCB data’ will not include the 

store instruction’s data. With the help of location, the example in section III which may get two load data 

values comes to a certain value in current scope. 

 

B.    Rationality check of request to external memory 

With the help of location, if any read request appears on the interface to external memory, the rationality 

of the request can be checked at Figure 8 step-1. If the byte unit’s location is ‘SCB’ or ‘STB’, which means 

there are instructions executing at background, the read request is reasonable, otherwise it means the 

address is not waiting to be sent and will be considered error.  

A cache’s space is limited, and if a new cache line needs to update into L1SYS while there is not enough 

space, cache replacement or eviction will happen. In this process, the new cache line will replace an existed 

cache line and this should also be updated to CAMEL model. This process can be predicted when the same 

index address’s read data comes back from external memory. And in current L1SYS, when a cache line is 

replaced in cache, L1SYS will send ACE write request to inform the coherent bus. The testbench will 



check between the prediction and the ACE write request to check the replacement and eviction process.  

CAMEL will also be updated along the process and always preserve the valid bytes align to cache.  

 

C. hit/miss check 

The ‘location’ and ‘valid’ in byte unit can be referenced to check each instruction’s hit/miss. Before the 

cache line is invalidated or evicted, we can expect core accessing to relevant address should get cache ‘hit’. 

Even the ‘valid’ in the byte unit is not 1, if the ‘location’ is reasonable, some store command can also be 

seen as cache hit. In this way, cache’s hit/miss check precision can be increased from nearly zero to 80%.  

 

There is no doubt that the more information added to CAMEL, the more complex CAMEL will be. But 

with the help of extra information, the checking precision and more checkers can work on the RTL design. 

The simple testbench and the precise checkers, you can’t have it both ways. However, with the 

characteristic of CAMEL, this can be achieved step by step. At early time of verification, simple CAMEL 

structure is easy to build and can work quickly to find RTL bugs. As time goes by, more information can be 

added for more checkers, the process is under control.  

 

V.   CAMEL IN TESTBENCH 

Previous testbench builds all the buffer models in RTL design. Relying on the cycle-accurate models, the 

testbench can not only check normal instructions’ data correctness, but also check special instructions’ 

process like cache operation and fence. Comparing to previous testbench, current testbench based on 

CAMEL mainly focuses on data correctness and address relating check. But for special instructions like 

cache operation and fence, they cannot be fully verified only based on CAMEL. Under such circumstances, 

some standalone models will be added to cover the point that CAMEL cannot cover. The current 

testbench’s whole picture is shown in Figure 9.  

 
Figure 9. Overview of Current Testbench 

 

Three VIP agents bind on L1SYS design boundaries, they are active core master agent, active ACE [1] 

slave agent, and a monitor on SRAM.  

Besides normal data access, Cache Operation (COP) is also supported in L1SYS. This is an operation 

which can change cache line’s state by special instruction. Normally when the core needs to change the 

current program, COP instruction may be sent to write all the dirty cache lines to external memory and 



clear the cache. Snoop request is from coherent bus and can also change the cache line’s state. These two 

processes change L1SYS’s cache line state besides the normal data process, so two standalone models are 

built to monitor and check them and also update CAMEL.  

 

A. Core active master agent 

At this point, the instruction’s address hit/miss will be checked based on CAMEL. If cache hit, check 

load data vs. CAMEL or update store data into CAMEL. If cache miss, a byte unit will be created and 

change ‘location’ to proper one, prepare for background check.  

The procedures are for normal instructions coming from the core, they focus on data check only. The 

hit/miss check is another standalone checker.  

 

B.    ACE active slave agent 

At this point, when read request command appears, the testbench will check the address’s rationality. 

When the read data is sent back from external memory, the corresponding byte units will change ‘location’ 

to ‘LFB’ and update data, dirty and unique attributes. Testbench will predict if the line filling process will 

trigger eviction based on CAMEL and record the possible write cache line address. When the write request 

command appears, it will be compared to previous record.  

if (tr.exact_type == READ) begin 

   wait (tr.addr_status == ACCEPT); 

   this.check_rationality_of_read_command(tr);              // check rationality base on location in CAMEL 

   camel.update_location(tr.addr, EXT_MEM); 

 

   wait (tr.data_status == ACCEPT); 

   camel.update_location(tr.addr, LFB); 

   camel.write_clean_data(tr.addr, tr.data);                      // write data while not cover exist dirty data 

end 

if (tr.exact_type == WRITE) begin 

   wait (tr.addr_status == ACCEPT && tr.data_status == ACCEPT); 

   camel.read_data(tr.addr, ref_data); 

   this.check_write_data(tr.data, ref_data);                      // compare write data with data in CAMEL 

   camel.write_valid(tr.addr, 0);                                       // if evict from CAMEL, invalid bytes 

   camel.delete_bytes(tr.addr);                                         // if need delete from model, delete bytes 

end 

if (camel.hit(tr.addr)) begin                             // query CAMEL for hit/miss 

   if (tr.cmd_type == LOAD) begin 

      this.check_load_data(tr);                           // check load data in sub-function 

   end 

   if (tr.cmd_type == STORE) begin 

      camel.write_data(tr.addr, tr.data);             // update data and dirty to CAMEL 

      camel.write_dirty(tr.addr, 1); 

   end 

end 

else begin 

   camel.add_addr_if_not_exist(tr.addr);         // create the unit byte if not exists 

   if (tr.cmd_type == LOAD) begin 

      camel.update_location(tr.addr, SCB);       // update location base on instruction type 

   end 

   if (tr.cmd_type == STORE) begin 

      camel.update_location(tr.addr, STB);       // update location base on instruction type 

   end 

end 



 

C. SRAM monitor 

Whichever cache line is written to valid at SRAM interface will be monitored at this interface. After 

RTL design writes the cache line to valid, CAMEL will also write the byte units to valid. This point’s 

monitor is not as important as the other two, even if without monitor at this point, the whole checker can 

also work. This point’s monitor is mostly for debug convenience.  

 

D. Standalone checker models 

There are some standalone checkers which cover the point that CAMEL cannot cover. Take COP model 

as an example, when core sends special instruction like flush all to L1SYS, COP model will record the 

instruction. In this checker, the testbench references a RTL internal signal which represents the COP 

process is done. When the model receives the COP event, it will examine CAMEL model and predict the 

evict cache lines to external memory. The prediction will later compare with the write commands appearing 

at ACE interface and check the COP process.  

In current testbench, checkers are broken down to different layers for different precision’s check. The 

main checking point, data correctness, is guaranteed by CAMEL and others are covered by standalone 

models. All the models and checkers work together to verify L1SYS properly.  

 

VI.   FEEDBACK MECHANISM BASED ON CAMEL 

Our previous testbench offers an abundance of feedback APIs [2] for effective stimulus generation based 

on the cycle-accurate buffer models. In current testbench, not only core instructions need to reference 

address from feedbacks, but also snoop requests need reference too.  

L1SYS’s design is complex when handling the conflict of foreground and background. For example, 

when a cache line miss is executed at background and fetch data from external memory, in the meanwhile, 

if the core accesses the same address cache line from foreground, the conflict appears. This kind of 

circumstances are the key point of verification, so feedback for effective stimulus is necessary.  

The ‘location’ information in CAMEL can take the role of feedback function. By sending instruction 

whose address is located at SCB or other buffers, we can generate more effective stimulus on complex 

cases, and speed up the verification process.  

After those buffer models are replaced with CAMEL model, those feedback APIs are modified 

accordingly based on ‘location’ information. Such modification is transparent to external users, and the 

stimulus effectiveness is almost the same.  

 

rand  my_instruction      tr; 

         int                          base_addr, end_addr; 

 

constraint reasonable_addr_range{ 

   tr.addr>=base_addr;tr.addr<=end_addr;            // constraint of transaction’s address 

} 

 

task body(); 

   `uvm_create_on(tr, m_sequencer) 

   get_addr_range();                                              // get the address range by CAMEL model 

   this.randomize(); 

   `uvm_send(tr) 

endtask 

 

function get_addr_range(); 

   int    addr_q[$]; 

   camel.get_addr_by_location(SCB, addr_q);      // query CAMEL model for certain location 

   set_addr_range(addr_q, base_addr, end_addr);  // set address range by the result of CAMEL 

endfunction 



VII.   SUMMARY 

In this paper, we present an implementation independent cache verification model. The basic structure is 

rather simple and easy to maintain, ‘location’ information is added for more precise checking and stimulus 

generation. With the help of CAMEL model, the testbench can de-couple with RTL design and save coding 

and maintained effort dramatically, as shown in Table I. 

  
Table I Comparison between Previous models and current models 

 
Previous 

Current 

CAMEL model Other models 

VIP number  5 3 

model number 6 1 2 

model code lines 8513 1915 622 
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