
Building a Comprehensive Hardware
Security Methodology

Anders Nordstrom & Jagadish Nayak
Tortuga Logic Inc.

Exponential Growth in Hardware Vulnerabilities
Total Documented Hardware
Vulnerabilities (CVEs) by Year

Why?

Source: NIST/MITRE 12/2020

• Security increasingly supported in hardware
• Mistakes can introduce severe vulnerabilities

• Complex interaction between security hardware
and firmware/software

• Thorough system-level verification is a challenge

• Architectural vulnerabilities allow remote exploit
• Dramatic increase of attack surface and scale

2

The Increasing Business Impact of Hardware Vulnerabilities

LOGICAL OR
ARCHITECTURALPHYSICAL

LOCAL ACCESS REQUIRED

Nvidia Tegra
Chip Flaw

PlundervoltPlatypus Starbleed Meltdown Spectre

Apple T2
Chip Flaw

Thrangry
Cat

REMOTELY EXPOITABLE

3

The Increasing Business Impact of Hardware Vulnerabilities

LOGICAL OR
ARCHITECTURALPHYSICAL

LOCAL ACCESS REQUIRED

Nvidia Tegra
Chip Flaw

PlundervoltPlatypus Starbleed Meltdown Spectre

Apple T2
Chip Flaw

Thrangry
Cat

High
Business Impact

Repeatable and
Scalable from

Anywhere

Lowest
Business Impact

One-off and
difficult to scale

REMOTELY EXPOITABLE

Often requires hardware changes to
remediate and can have enormous

impacts on system performance and
operations.

4

System Security Built on Abstractions

Application Software

Operating System

Firmware

Boot ROM

System-on-Chips (SoCs)

Hardware Roots of Trust

Hardware

Meltdown Spectre

Software

Heartbleed

Hardware/Software
Boundary

5

Key Components of a Proactive Security Program
Not Just an Engineering Problem

Security Sign-off

Confirmed before
tape-out to

manufacturing

Security Requirements
Collected before chip

design

Security Verification
Regularly applied as

chip is designed

Security Signoff
Confirmed before

manufacturing

Key Stakeholders

Legal and
Compliance

MarketingCustomers Incidence
Response

Standards
Bodies

Product
Security

Regulators R&D

6

Hardware Security— Easy in Concept, Difficult in Practice

Identify security issues early
to successfully and cost-effectively
remediate them before tape-out

Requirement
Validation

Compliance
Reporting

TapeOut

Define comprehensive security
requirements & compile into compact,

verifiable properties

Assets

Objectives

Protections

Requirements

Th
re

at
 M

od
el

Establish an automated and scalable
process to verify all security properties

throughout development

Security
Verification

Security
Analysis

Design
Update

Security
Verification

Security
Analysis

Design
Update

Block

System +
Software

Security Requirements Security Verification Security Signoff

7

Radix Provides a Complete Verification Solution

Security Sign-offConfirmed before tape-
out to manufacturing

Security Requirements Security Verification Security Signoff

Apply CWE-based methodology to
define requirements and compile into

Radix Rules

CWE

RTL

Require-
ments

CWE

Rules

Build security monitor and co-
simulate/co-emulate frequently with

design RTL

Radix S
Simulation

Security
Monitor

Radix M
Emulation

Identify security issues early
to successfully and cost-effectively
remediate them before tape-out

8

8

Deriving Security Requirements

Threat modeling identifies attacker, capabilities, possible gains, how to attack
It bounds security requirements and helps identifying

1. Assets and the costs/consequences if not protected
2. Security objectives for Assets
3. What are the protections and attack surface

9

Functional
Requirements
Specification

Block &
Subsystem
Design

Block &
Subsystem
Verification

SoC
Integration

Low-Level
Software

Testing

Post-SI
Testing

Traditional Hardware
Development Lifecycle

Secure Hardware
Development Lifecycle

Threat Modeling
Security Specification

Block Level
Security Verification

System Level
Security Verification

Standard Security Objectives: The CIA Triad

• Confidentiality: Protection of an asset/information from
disclosure to unauthorized entities

• Integrity: Protection of an asset against malicious
modification or tampering by unauthorized entities

• Availability: System remains responsive in the presence
of an adversary

10

Security requirements defined using the following concepts:

Integrity

Confidentiality Availability

Information
Security

Leverage CWE for Security Requirements
• Choose CWEs Relevant to Threat Model

• Weakness Database (CWE) Assists through:

• Asset Characterization
• CWE organized by common hardware elements

• Modeling Attackers and Threats
• CWE provides insight into what typically goes wrong

• Selecting Mitigations
• Common consequences and potential mitigations listed

11

CWE Hardware View
https://cwe.mitre.org/data/definitions/1194.html

CWE
Security

Requirements

11

Easy Expression of Security Verification Rules

• Security Requirements identify Security Objectives for Assets
• Radix Rules specify illegal information flows for Assets

12

Security
Requirements

Security Rules

Security requirements are
concerned with the
flow of information between
places in the design
with different levels of trust

Information Flow Analysis

Time

Flow data analyzed
symbolically

Flow-enabling signals
analyzed concretely

Automated Tracking of
Secret Assets

Combines power of symbolic analysis
• Independent of values of secret assets
• Tracked through logical and sequential transformations

Hybrid Security Analysis

With the scalability of simulation/emulation
• Applicable on all design levels: block, subsystem, SoC
• Handles software combined with hardware

Addresses security verification limitations
• Formal methods – scalability, expert knowledge
• SVA and UVM based simulation – expressiveness,

coverage

13

Anatomy of a Basic Radix Security Rule

• Source:
• Which design signals should

information be tracked from?

• Destination:
• Which design signals should

information not flow to?

• Rule fails if source information
reaches destination

{ Source Signal Set } =/=>
{ Destination Signal Set }

Scope of Security Model (Monitor)
• Must contain source and destination

Time

Source

Destination

14

Example of Developing Radix Rules

1. Define Security Requirement
i. Identify Secure Asset – efuse key
ii. Identify Attack Surface/Boundary – jtag ports
iii. Identify Conditions when security policy is relevant

- in debug mode

2. Security Requirement
• “The eFuse key must not be accessed via the JTAG when DUT is in debug mode”

3. Radix Rules
a. Confidentiality: dut.secure_efuse.key when (dut.debug_mode == 1) =/=> dut.jtag.$all_outputs
b. Integrity: dut.jtag.$all_inputs when (dut.debug_mode == 1) =/=> dut.secure_efuse

CPU JTAG

secure_efuse

ATTACKER

KEY

DUT

Red flow of information
would break security

15

Radix Verification Flow
Design RTL Design RTL

Radix-S
Runtime

Supports Any
Environment:

Software

Supports Any
Design:

CWE

RTL

Require-
ments

CWE

Rules

Security Rules

SoC
Security
Monitor

Security
Monitor

Generation

Radix-S
Simulation

Radix-M
Runtime

Radix-M
Emulation

SoC

16

Radix Analysis
Platform

Detecting Vulnerabilities as Design Evolves
Re-running security rules catches additional vulnerabilities
introduced as the design evolves and can detect problems

in the system software stack

17

Te
st

be
nc

h

Security
Model

Bl
oc

k

Te
st

be
nc

h

Security
Model

Subsystem Te
st

be
nc

h

SoC

CPU

Security
Model

Design Life-cycle

So
ft

w
ar

e
St

ac
k

Arm SoC Demo
How to Use Radix to identify Security Vulnerabilities

Jagadish Nayak

ARM Cortex-M3 SoC Design for IoT Applications

• Key Components
• Cortex-M3 Processor
• AHB Interconnect
• APB Bridge to Peripherals
• Flash and several SRAMs

• Security Features
• Privileged execution mode
• Memory Protection Unit
• Peripheral lock bits

True Random Number
Generator

ARM Core

Memories

19

Common Mistakes Make Secure Assets Vulnerable

• Secure Assets
• TRNG
• Secure area in SRAM2

• Common Mistakes
• System integration

misconfigurations
• User Level Software access

due to programming errors
True Random Number

Generator

ARM Core

Memories

20

TRNG Confidentiality/Integrity Information Flow
ARM CorePrivileged Mode

Legal

21

TRNG Confidentiality/Integrity Information Flow
ARM CoreUn-privileged Mode

Illegal

Reading/Writing Data
from the TRNG block
in unprivileged mode

is illegal

22

Steps to Create the Security Requirement
1. Identify the Asset

• TRNG

2. Determine the Security Objective
• Confidentiality and Integrity

3. Identify the Protection Mechanism
• Unprivileged SW is blocked from accessing the TRNG by

Lock Bit

Unprivileged Mode

Protection Mechanism:
Lock bit is set when in
unprivileged mode to
prevent read/write of

TRNGSecurity Requirement
“TRNG peripheral cannot be read/written in unprivileged mode”

Asset Objective:
Confidentiality and Integrity

Protection
Boundary

ARM Core

23

Security Requirement ---> Abstract Security Rule

TRNG_CONF: assert iflow (
(TRNG) when
(In Unprivileged Mode)
=/=>

(APB Bus);

Source

Destination

When Keyword: Start Tracking

No flow operator

Security Requirement
“TRNG peripheral cannot be read/written in unprivileged mode”

Asset Objective:
Confidentiality and integrity

Protection Boundary

TRNG_INT: assert iflow (
(APB Bus) when
(In Unprivileged Mode)
=/=>

(TRNG);

Confidentiality

Integrity

Source

When Keyword: Start Tracking

DestinationNo flow operator

Label

Label

24

Instantiating Radix Security Rule with RTL Signals
Confidentiality Rule

TRNG_CONF: assert iflow (

when(TDI)

=/=> u_iot_top.hrdatas);

unprivileged mode
When Keyword:

Start Tracking

Destination: APB Read
Bus

No flow operator

TRNG_CONF: assert iflow ((TRNG) when (In Unprivileged Mode) =/=> (APB Bus));

Source:
TRNG Register

(u_mps2_peripherals_wrapper.u_beetle_peripherals_fpga_s
ubsystem.u_trng.rng_engine_i.rng_top_i.trng_top_i.trng_
reg_file_i.sample_cnt1)Label

25

Instantiating Radix Security Rule with RTL Signals
Integrity Rule

TRNG_INT: assert iflow (u_iot_top.hwdatas

when(TDI)

=/=>

(u_mps2_peripherals_wrapper.u_beetle_peripherals_fpga_subsystem.u_trng.rng_engine
_i.rng_top_i.trng_top_i.trng_reg_file_i.sample_cnt1));

unprivileged mode

When Keyword:
Start Tracking

Destination: TRNG
Register

No flow operator

TRNG_INT: assert iflow ((APB Bus) when (In Unprivileged Mode) =/=> (TRNG));

Source:
APB Write Bus

Label

26

Radix S/M Verification Flow
Design RTL Design RTL

Radix-S
Runtime

Supports Any
Environment:

Software

Supports Any
Design:

CWE

RTL

Require-
ments

CWE

Rules

Security Rules

SoC
Security
Monitor

CPU

Security
Monitor

Generation

Radix-S
Simulation

Radix-M
Runtime

Radix-M
Emulation

SoC

27

Generate the Security Monitor
Security Monitor Generation Script

Generate Security Monitor
radixs_shell –s security.script

// File: security.script
set_project failing_rule
set_top_language systemverilog

read -f m3.f
set_top m3ds_user_partition
elaborate

read_assertions security_rules.as
export_security_package
quit

Design Files

Security Rule

Project setup

Security Monitor Scope

Security
Monitor

Generation

28

Compile and Run with the Security Monitor

Compile and Run
with

Security Monitor

// Compile Command
vcs * \

-f radixs.work/failing_rule/tortuga_all_assertions.f \
-top radix_bind \
+define+TTGL_BINDPATH=tb_fpga_shield.u_fpga_top.u_fpga_system.u_user_partition

// Run Command
./simv * \

–sv_root <path_to_radix>/shell/lib –sv_lib libttgldpiv

Include Security Monitor

Bind Security Monitor

Run

Design RTL

Radix-S
Runtime

SoC
Security
Monitor

Radix-S
Simulation

29

Radix S/M Verification Flow
Design RTL Design RTL

Radix-S
Runtime

Supports Any
Environment:

Software

Supports Any
Design:

CWE

RTL

Require-
ments

CWE

Rules

Security Rules

SoC
Security
Monitor

CPU

Security
Monitor

Generation

Radix-S
Simulation

Radix-M
Runtime

Radix-M
Emulation

SoC

30

Radix Security Rule Failed

[RADIX] Security property assertion_TRNG_CONF is tagging information flow from rule sources at time
(966000)

[RADIX] -FAIL- Security property assertion_TRNG_CONF failed at time 1010600 - Occurred (1) time(s)
[RADIX] -FAIL- Security property assertion_TRNG_CONF failed at time 1010840 - Occurred (2) time(s)
[RADIX] -FAIL- Security property assertion_TRNG_CONF failed at time 1039320 - Occurred (3) time(s)
.
.

[RADIX] Total failures for security property <assertion_TRNG_CONF>: (8)

Simulation Log file output

Next Step: Analyze the Failure
with dump data

31

Path View

Source:
trng_reg_file_i.sample_cnt1

Destination:
u_iot_top.hrdatas

Tracks the flow of information from source to destination through time in
hierarchy of the design

Browse design
hierarchy

Protection Mechanism bug: Read
request from Arm Core should be

stopped by trng decoder

32

Secure Asset View (SAV)

Secure Information Flow

Failure

No secure information flow

High level view of information flow through blocks in the design hierarchy

Browse design
hierarchy

33

Waveform View

TDI == 1: Running in Un-privileged mode

Source: sample_cnt1 register
from TRNG is tracked

Protection Failure: sample_cnt1
flows to hrdatas

Tracks the flow of information through signals in the design, shading in red
the secure information for easy debug

Destination: hrdatas

Lock bit: secure_i = 0 (Error)

34

TRNG Decoder Bug
• Incorrect connection when generating cc_psel signal

m3ds_apb_decoder # (.ADDR_WIDTH(12))
u_beetle_apb_decoder_trng (

// Inputs
.psel_i (TRNGPSEL_i),
.paddr_i (TRNGPADDR_i),
.penable_i (TRNGPENABLE_i),
.pprot_i(TRNGPPROT_i),
.secure_i (1’b0), // Lock bit not connected to control register
.pready_i (1'b1),

// Outputs
.psel_valid_o (psel_valid_trng), //decoded psel to TRNG cc_psel
.penable_valid_o (penable_valid_trng),//decoded penable to TRNG
.pready_o (TRNGPREADY_o)

);

1. psel_valid_o depends on
secure_i and paddr_i

2. Access allowed:
psel_valid_o == 1 IF
secure_i == 0 AND
paddr_i == TRNG address

3. secure_i incorrectly tied to 0,
should have been connected to lock
bit in control register

4. TRNG can now be accessed (read
and written) in all modes including
unprivileged mode

35

SRAM2 Integrity Information flow

Memories

ARM Core

Legal: Read/Write SRAM2

Privileged Mode

36

SRAM2 Integrity Information flow

Memories

ARM Core

Illegal: Write SRAM2

Unprivileged Mode

Writing data into
SRAM2 in unprivileged

mode is illegal

37

Steps to Create the Security Requirement
Unprivileged Mode1. Identify the Asset

• SRAM2

2. Determine the Security Objective
• Integrity

3. Identify the Protection Mechanism
• FW programs the MPU for read only access

by unprivileged SW Protection Mechanism: MPU
programmed to allow no write

access to SRAM2 in
unprivileged modeSecurity Requirement

“ SRAM2 protected range must not be written by unprivileged SW ”

Asset Protection BoundaryObjective: Integrity

38

MPU_SRAM2_WR: assert iflow (
(CPU write transaction request) when
(SRAM2 address range AND unprivileged mode)
=/=>

(SRAM2 write request)
unless (SRAM2 not selected));

Converting Security Requirement to Abstract
Security Rule

Source

Destination

Keyword: Start Tracking

No flow operator

Keyword: Ignore/Flag failure

Security Requirement

“ SRAM2 protected range must not be written by unprivileged SW

Asset Protection BoundaryObjective: Integrity

Label

39

Instantiating Radix Security Rule with RTL signals

MPU_SRAM2_WR: assert iflow (u_iot_top.hwrites) when
((u_iot_top.haddrs >= ‘h20010000) && (u_iot_top.haddrs < ‘h20018000) && TDI)

=/=>

u_iot_top.SRAM2WREN

unless

(!u_iot_top.SRAM2CS);

SRAM2 address range unprivileged mode

SRAM2 not selected

Source: Write access request from CPU Keyword: Start Tracking

Destination: SRAM2
write request

No flow operator

MPU_SRAM2_WR: assert iflow ((CPU write transaction request) when
(SRAM2 address range AND unprivileged mode)
=/=>
(SRAM2 write request)
unless (SRAM2 not selected));

Keyword: Ignore/Flag failure

40

Radix S/M Verification Flow
Design RTL Design RTL

Radix-S
Runtime

Supports Any
Environment:

Software

Supports Any
Design:

CWE

RTL

Require-
ments

CWE

Rules

Security Rules

SoC
Security
Monitor

CPU

Security
Monitor

Generation

Radix-S
Simulation

Radix-M
Runtime

Radix-M
Emulation

SoC

41

Radix Security Rule Failed

[RADIX] Security property assertion_MPU_SRAM2_WR is tagging information flow from rule
sources at time (1205880)

[RADIX] -FAIL- Security property assertion_MPU_SRAM2_WR failed at time 1206000 - Occurred
(1) time(s)

[RADIX] Total failures for security property <assertion_MPU_SRAM2_WR>: (1)

Simulation Log file output

Next Step: Analyze the Failure
with dump data

42

Waveform View of Failure

SRAM2 address range

Waveform View tracks the flow of information through signals in the design,
shading in red the secure information for easy debug

Write Request

TDI == 1: Running in unprivileged mode

CPU unprivileged transaction
request is tracked Protection Failure: unprivileged write request

flows to secure SRAM2

43

SRAM Integrity Rule: Firmware Analysis
// Original Firmware

// Configure region 3 to cover CPU 32KB SRAM2 (Non-Shared, Normal, Not Exec, nPriv RO)

MPU->RBAR = 0x20010000 | REGION_Valid | 3;

MPU->RASR = REGION_Enabled | NOT_EXEC | NORMAL | REGION_32K | FULL_ACCESS;

- Fix the Firmware, Recompile and Rerun
MPU->RASR = REGION_Enabled | NOT_EXEC | NORMAL | REGION_32K | NPRIV_RO;

- Note: Security Monitor not recreated as RTL does not change

Error: Should be
NPRIV_RO

44

SRAM Integrity: Comparing Failing and Passing
Test

Failing Test with Firmware Bug

Passing Test with Fixed Firmware

Failure: SRAM2CS is
influenced by hwrites

Pass: After FW fix,
write request to

SRAM2 is not made by
Arm Core

45

Demo Summary
• Radix Flow

• Easily fits into existing simulation verification environments
• Automated and repeatable security process

• Radix Rule
• Completely captures security requirements

• Radix Debug Analysis Views
• Information Flow Technology efficiently identifies root cause of vulnerability

• Radix Detects Security Violations
• TRNG example: Hardware incorrectly grounds lock bit – allows access in unprivileged

mode
• SRAM2 example: Firmware incorrectly programs MPU – allows access to secure

memory in unprivileged mode
• These security bugs are hard to find using traditional functional verification tools

46

Questions

47

