(2022

DESIGN AND VERIFICATION ™

DV OIN

CONFERENCE AND EXHIBITION

Building a Comprehensive Hardware
Security Methodology

Anders Nordstrom & Jagadish Nayak
Tortuga Logic Inc.

SYSTEMS INITIATIVE

Exponential Growth in Hardware Vulnerabilities

Total Documented Hardware
Vulnerabilities (CVEs) by Year

Why?

» Security increasingly supported in hardware
* Mistakes can introduce severe vulnerabilities

« Complex interaction between security hardware

and firmware/software
* Thorough system-level verification is a challenge
« Architectural vulnerabilities allow remote exploit I II II
P = _ARRRRR_RINN

» Dramatic increase of attack surface and scale 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

Source: NIST/MITRE 12/2020

SYSTEMS INITIATIVE

The Increasing Business Impact of Hardware Vulnerabilities

REMOTELY EXPOITABLE

A
L4 ¥
p|yus Plundervolt Starbleed Meltdown Spectre
o LOGICAL OR
PHYSICAL <€ @ > ARCHITECTURAL
Thrangry
Cat
& E§nr
Nvidia Tegra Apple T2
Chip Flaw Chip Flaw
A4

LOCAL ACCESS REQUIRED

SYSTEMS INITIATIVE

The Increasing Business Impact of Hardware Vulnerabilities

REMOTELY EXPOITABLE

#

Platypus Plundervolt

A

PHYSICAL <€

Lowest

Business Impact
One-off and
difficult to scale

v

Often requires hardware changes to
remediate and can have enormous

impacts on system performance and
operations.

High
Business Impact
Repeatable and
Scalable from
Anywhere

LOGICAL OR

Thrangry
Cat

> :

< ®T2
Nvidia Tegra Apple T2
Chip Flaw Chip Flaw

LOCAL ACCESS REQUIRED

> ARCHITECTURAL

SYSTEMS INITIATIVE

System Security Built on Abstractions

Application Software
Software

Heartbleed Operating System

Hardware/Software Firmware
Boundary
BLEEDING #BIT Boot ROM
- Eort_uga
Hardware OgIC

System-on-Chips (SoCs)

£y

Meltdown Spectre

Hardware Roots of Trust

Key Components of a Proactive Security Program

Not Just an Engineering Problem

Security Requirements Security Verification Security Signoff

Collected before chip Regularly applied as Confirmed before
design chip is designed manufacturing

Key Stakeholders
L [J
m o . n Y Yo R P
2% al@a a0 v Jo ® e v
Legal and Customers Marketing Product Regulators R&D Incidence Standards
Compliance Security Response Bodies

Hardware Security— Easy in Concept, Difficult in Practice

Security Requirements Security Verification Security Signoff

Define comprehensive security Establish an automated and scalable Identify security issues early
requirements & compile into compact, process to verify all security properties to successfully and cost-effectively
verifiable properties throughout development remediate them before tape-out

: £ Block
o Security Requirement
[Assets]-l QFE A Validation -l

© L. Security

-]

§° [Objectives]1 Analysis Compliance

= System + .

B Software Reporting l

< Protections Security

- 1 Verification

Requirements] Security e

 S— Analysis

SYSTEMS INITIATIVE

Radix Provides a Complete Verification Solution

Security Requirements Security Verification Security Signoff

Apply CWE-based methodology to Build security monitor and co- Identify security issues early
define requirements and compile into simulate/co-emulate frequently with to successfully and cost-effectively
Radix Rules design RTL remediate them before tape-out

(R X CcwE /

equire- Security
ments Monitor

RTL

Radix S
Simulation

Radix M
Emulation

Rules

SYSTEMS INITIATIVE

Deriving Security Requirements

Traditional Hardware Functional Block & Block & SoC Low-Level Post-SI
Requirements Subsystem | Subsystem |* |ntesration |, Software Testing

Specification Design Verification Testing

s b i

Secure Hard\.lvare Threat Modeling B!ock Le.v'el . System Level
Development Lifecycle Security Specificatio‘ Security Verification Security Verification

Development Lifecycle

Threat modeling identifies attacker, capabilities, possible gains, how to attack
It bounds security requirements and helps identifying

1. Assets and the costs/consequences if not protected
2. Security objectives for Assets
3. What are the protections and attack surface

Standard Security Objectives: The CIA Triad

Security requirements defined using the following concepts:

* Confidentiality: Protection of an asset/information from
disclosure to unauthorized entities

* Integrity: Protection of an asset against malicious

modification or tampering by unauthorized entities Information

A : . Securit
 Availability: System remains responsive in the presence y

of an adversary

Leverage CWE for Security Requirements

Choose CWEs Relevant to Threat Model

1194 - Hardware Design

Secu rity Manufacturing and Life Cycle Management Concerns - (1195)
Security Flow Issues - (1196)
C|
H 9 Integration Issues - (1197)
CW E Re q uireme nts Privilege Separation and Access Control Issues - (1198)
General Circuit and Logic Design Concerns - (1199)

Core and Compute Issues - (1201)

Memory and Storage Issues - (1202)

[®@ Peripherals, On-chip Fabric, and Interface/IO Problems - (1203)
Security Primitives and Cryptography Issues - (1205)

=Power Clock, and Reset Concerns - (1206)

M;!;“““

o (% Debug and Test Problems - (1207)
Wea kn ess Data ba se (CW E) ASS | StS th ro Ugh . - © Exposed Chip Debug and or Test Interface With Insufficient Access Control - (1291)
- @ Hardware Internal or Debug Modes Allow Override of Locks - (1234)
5 . - O Exposure of Security-Sensitive Fuse Values During Debug - (1243)
Asset Ch aracterization - O Improper Authorization on Physical Debug and Test Interfaces - (1244)
- O Sensitive Information Uncleared During Hardware Debug Flows - (1258)

- © Debug/Power State Transitions Leak Information - (1272)

* CWE organized by common hardware elements @ Cross- -Cutting Problems - (1208)
* Modeling Attackers and Threats CWE Hardware View
e CWE provides insight into what typically goes wrong https://cwe.mitre.org/data/definitions/1194.html/

Selecting Mitigations

« Common consequences and potential mitigations listed

SYSTEMS INITIATIVE

Easy Expression of Security Verification Rules

Security
Requirements

' Security Rules

Security requirements are
concerned with the

« Radix Rules specify illegal information flows for Assets flow of information between
places in the design

with different levels of trust

* Security Requirements identify Security Objectives for Assets

Confidentiality

) : Integrity
(information leakage) (information modification)
r r D

Adversary

Asset

Security Perimeter
\. 4 _ Security Perimeter J

Adversary

SYSTEMS INITIATIVE

Information Flow Analysis

Automated Tracking of
Secret Assets

SYSTEMS INITIATIVE

FIow-enainng signals

<

analyzed concretely

S
9

Flow data analyzed
symbolically

Hybrid Security Analysis

Combines power of symbolic analysis
* Independent of values of secret assets
* Tracked through logical and sequential transformations

With the scalability of simulation/emulation
« Applicable on all design levels: block, subsystem, SoC
* Handles software combined with hardware

Addresses security verification limitations
« Formal methods — scalability, expert knowledge

« SVAand UVM based simulation — expressiveness,
coverage

Anatomy of a Basic Radix Security Rule

{ Source Signal Set } =/=>
{ Destination Signal Set } e Source:
* Which design signals should
information be tracked from?
Destination b

e Destination:

* Which design signals should
information not flow to?

Source 1. ¢ .
* Rule fails if source information

\ ; reaches destination

Scope of Security Model (Monitor)
 Must contain source and destination

SYSTEMS INITIATIVE

Example of Developing Radix Rules

1. Define Security Requirement
i. ldentify Secure Asset — efuse key v

ii. Identify Attack Surface/Boundary — jtag ports | l

iii. ldentify Conditions when security policy is relevant —

-in dEbug mode \ secure_efuse

2. Security Requirement
* “The eFuse key must not be accessed via the JTAG when DUT is in debug mode”

3. Radix Rules

a. Confidentiality: dut.secure efuse.key when (dut.debug mode == 1) =/=> dut.jtag.$all outputs
b. Integrity: dut.jtag.$all inputs when (dut.debug mode == 1) =/=> dut.secure efuse

SYSTEMS INITIATIVE

Radix Verification Flow

Design RTL Design RTL Igl SRiar:mjtlJ)I(:’:ion
Supports Any SoC
Design:
VERILOG Radix-S
aaix-
VHDL E E Runtime
SystemVerilog.
Radix Analysis
| — Platform
@ Radix-M
Security Rules Security Emulation Supports Any
Monitor Environment:

Generation

SYNOPSYS

@ Radix-M - .
Runtime Caden(e

Software @
Menlor

Rules

SYSTEMS INITIATIVE

Detecting Vulnerabilities as Design Evolves

Re-running security rules catches additional vulnerabilities
introduced as the design evolves and can detect problems

in the system software stack SoC

, .
R Security

Testbench

Subsystem Security

P .
Security Model

\
\
\

Testbench

Testbench

Design Life-cycle

SYSTEMS INITIATIVE

Arm SoC Demo

How to Use Radix to identify Security Vulnerabilities

Jagadish Nayak

ARM Cortex-M3 SoC Design for loT Applications

ARM Core
* Key Components onP Cortonc
* Cortex-M3 Processor e e we J| e J[Teu
— slave (MCC Code download)
* AHB Interconnect] ! ﬁ
. . EXPO EXP1 CM3DlI CM3S
* APB Bridge to Peripherals St | v
< APB
* Flash and several SRAMs
AHB to AHB to AHB to AHB to AHB
SRAM SRAM SRAM SRAM Master
e Security Features = —
iFIaSh AHBto | |[SRAMO| |SRAM1 | -m |SRAM3| | FPGA AHB Peripheral | H 3x reserved|
* Privileged execution mode T Memories master | [Duatimer |
- - . [orr)] s
* Memory Protection Unit True Random Number
* Peripheral lock bits Generator
v

SYSTEMS INITIATIVE

Common Mistakes Make Secure Assets Vulnerable

ARM Core

 Secure Assets

DAP Cortex-M3

° TRNG * — AHBISIaVe WIC ETM TPIU
. I slave (MCC Code download)
* Secure area in SRAM?2 |] ﬁ
EXPO EXP1 CM3DI CM3S
. AHB Mux E Atti)B
e Common Mistakes ks
* System integration e | [][] [B0] [, —
misconfigurations N == r——
i %" [AHB o ilSRAMOl | SRAM1 | - |SRAM3| | FPGA AHB Peripheral |
* User Level Softwa.re access L Mermories o
due to programming errors [omawr] s
"""""" True Random Number
Generator
A 4

SYSTEMS INITIATIVE

TRNG Confidentiality/Integrity Information Flow

Privileged Mode ARM Core
DAP Cortex-M3
< A
| wicC ETM TPIU
AHB AHB slave
1 siave (MCC Code download)
i ¢ Legal
EXPO EXP1 CM3DI CM3S
AHB
to
APB
AHB to AHB to AHB to AHB to AHB Timer
SRAM SRAM SRAM SRAM Master Timer
i Flash ——L !

| AHBto | | [sRAMO| [sRAM1| [sRAM2| [SRAM3| | FPGA AHB Peripheral | — 3x reserved |

1 SRAM : APB
: : master _—| Dual timer l

] 7 11~

I 1
i SRAMF | | 15 — UARTs |
Pt (e SR O Re

TRNG —| Watchdog I

RTC

v

SYSTEMS INITIATIVE

TRNG Confidentiality/Integrity Information Flow

Un-privileged Mode ARM Core
DAP Cortex-M3
= | wiC ETM I TPIU
-« O (MCCgkcl)ges:jac;,fmload)
i ¢ ﬁ lllegal
EXPO EXP1 CM3DI CNI3S

AHB to AHB to AHB to AHB to AHB
SRAM SRAM SRAM SRAM Master
v

i Flash ——L "1

! AHBto | | [sRAMO| [sRAM1| [sRAM2| [SRAM3| | FPGA AHB Peripheral | 3x reserved |
1 SRAM 1

: : master Dual timer I
l I . . . 7' 11-

: SRAMF i Reading/Writing Data 1 GARTs |
b from the TRNG block |

Watchdog

in unprivileged mode
is illegal

SYSTEMS INITIATIVE

Steps to Create the Security Requirement

Unprivileged Mode ARM Core
1. ldentify the Asset [ow][oo |
B] | wic || ETM TPIU |

b TRNG N QQ*VZ (Mccéﬁesliagxnload)

EXP1

2. Determine the Security Objective
* Confidentiality and Integrity

AHB Mux

AHBto | [AHBto | [AHBto | [AHBto AHB
SRAM ‘ SRAM ‘ SRAM SRAM Master
L] . o +
3. Identify the Protection Mechanism T e S S S S —

APB

1

[}

]

]

| =

1 master Dual timer
H -

]

]

|

* Unprivileged SW is blocked from accessing the TRNG by

7, 11-
15

LOCk Bit B -Watchdog
Protection Mechanism:
Lock bit is set when in
unprivileged mode to
. { revent read/write of
Security Requirement i TRNG
“TRNG peripheral cannot be read/written in unprivileged mode”
“ - J & ~ J |\ ~~ J
Asset Objective: Protection
Confidentiality and Integrity Boundary

SYSTEMS INITIATIVE

Security Requirement ---> Abstract Security Rule

Security Requirement

“TRNG peripheral cannot be read/written in unprivileged mode”

(& < _)

Asset Objective: Protection Boundary
Confidentiality and integrity

Confidentiality

m TRNG CONF: assert iflow (
B coocc
ource

’ (In Unprivileged Mode)
=/=>

1
Integrity
m TRNG INT: assert iflow (When Keyword: Start Tracking

: (APB Bus) when
’ (In Unprivileged Mode)
=/=

No flow operator | (TRNG) ;

[

When Keyword: Start Tracking

SYSTEMS INITIATIVE

Instantiating Radix Security Rule with RTL Signals
Confidentiality Rule

r TRNG CONF: assert iflow ((TRNG) when (In Unprivileged Mode) =/=> (APB Bus));

TRNG CONF: assert iflow ((u_mpsZ2 peripherals wrapper.u beetle peripherals fpga_s

ubsystem.u trng.rng engine 1i.rng top 1.trng top i.trng
m' reg file i.sample cntl)

when (TDI) w
= unprivileged mode |
When Keyword: | — . ’ Source-:
Start Tracking /' TRNG Register

=/=>u iot top.hrdatas);

|
No flow operator | ~
- - Destination: APB Read

Bus

SYSTEMS INITIATIVE

Instantiating Radix Security Rule with RTL Signals
Integrity Rule

r TRNG INT: assert iflow ((APB Bus) when (In Unprivileged Mode) =/=> (TRNG));
TRNG INT: assert iflow (u iot top.hwdatas _ . Source: |
APB Write Bus /

_ — when (TDI) unprivileged mode |
When Keyword:
Start Tracking =/=> No flow operator
- — - o S/ e - - 4

(u mps2 peripherals wrapper.u beetle peripherals fpga subsystem.u trng.rng engine
_l.rng top i.trng top i.trng reg file i.sample cntl));

Destination: TRNG
Register J

SYSTEMS INITIATIVE

Radix S/M Verification Flow

Design RTL Design RTL Radix-S
Supports Any cor Sl Supports Any
Design: Environment:
VERILOG SYNOPSYS
VHDL — Radix-S cadence

Runtime
SysternVerilog‘ Meg!osr
s./

Radix-M
Security Rules Emulation
Security

QUE

(~ ov- Monitor SYNOPSYS
Ri“gﬂ[g- /) Generation C 5 d enc ee
I1SO Meno
NS Radix-M ©
E Rfmlt)i(me eﬂmens BuEess

Rules

SYSTEMS INITIATIVE

Generate the Security Monitor

Security Monitor Generation Script

—r

// File: security.script
set project failing rule

Project setup ////’ set top language systemverilog
read -f m3.f
Design Files //// set top m3ds user partition Security Monitor Scope

elaborate

Fead assewtionsNsegguriky wules. as

SecurhyFﬂﬂe //// export security package
quit
Security

Generate Security Monitor Monitor

. . . Generation
radixs shell -s security.script

SYSTEMS INITIATIVE

Compile and Run with the Security Monitor

// Compile Command Include Security Monitor
ves * O\ —
ik rad1x§.woFk/falllng_rule/tortuga_all_assertlons.f \ Bind Security Monitor
—top radix bind \

+define+TTGL BINDPATH=tb fpga sShield.u fpga top.u fpga system.u user partition

./simv %\ ——
—-sv_root <path to radix>/shell/lib -sv_1lib libttgldpiv

Design RTL EI R.adix-S.
Compile and Run Simulation
with
Security Monitor Radics
untime

SYSTEMS INITIATIVE

Radix S/M Verification Flow

Design RTL Design RTL Radix-S
Supports Any cor Sl Supports Any
Design: Environment:
VERILOG SYNOPSYS
VHDL ' Radix-S cadence

Runtime
SysternVerilog‘ Meg!osr
s./

Radix-M
Security Rules Emulation
Security

QUE

(~ v Monitor S‘/"UPS‘/S&)
requre) L) Generat’ n C 5 denc e°
AZBR RT %
IS0 |£ Gl Menbor

Rules

SYSTEMS INITIATIVE

Radix Security Rule Failed

Simulation Log file output

[RADIX] Security property assertion TRNG CONF is tagging information flow from rule sources at time
(966000)

- Occurred (1) time(s)
- Occurred (2) time(s)
- Occurred (3) time(s)

[RADIX] -FAIL- |Security property assertion TRNG CONF failed at time|1010600
[RADIX] -FAIL- |Security property assertion TRNG CONF failed at time| 1010840
[RADIX] -FAIL- |Security property assertion TRNG CONF failed at time| 1039320

[RADIX] Total failures for security property <assertion TRNG CONEF>: (8)

Next Step: Analyze the Failure _
with dump data

3022
accellera e

SYSTEMS INITIATIVE

Path View

[startup window x| . security_rules.as xT # m3 Run Results xT. m3: TRNG_CONF x] (v)2

Time (ps) 1010580999 ‘ 1010600000 10106

Browse design
hierarchy

Source:
trng_reg_file_i.sample_cntl

Destination:

u_iot_top.hrdatas

ystem/u_trng/rng_engine_i/rng_top_i/trng_top_i/trng_reg_file_i

als_fpga_subsystem/u_trng/rng_engine_i/rng_top_i/rng_misc_i

em/u_trng/slave_bus _ifc_i

r/u_beetle_peripherals_fpga_subs

u_iot_top

u_iot_topyu_p_beid_interconnect_f0

2id_interconnect_fO/u_p_beid_intercopnect_fO_apb_slave_mu . .
Protection Mechanism bug: Read

request from Arm Core should be
'U_p_beid_interconneCt_fo/U_p_beid_inte COnneCt_fo_ahb mtx Stopped by trng decoder

p_beid_interconnect_f0/u_p_beid_interconnect fO_ahb_to_ap

ahb_mtx/u_p_beid_interconnect_f0_ahb_mt

Tracks the flow of information from source to destination through time in
hierarchy of the design

accellera DVC@&

SYSTEMS INITIATIVE

Secure Asset View (SAV

[startup window x| . security rules.as x | 7 m3 Run Resuits x | [ll m3: TRNG_CONF x | B8 m3: TRNG_CONF x [[m3: TRNG_CONF x| =)
Tlme(ps) 101054861¢ l 1010200000ps 1010400000ps 1410600000[)5 1010800000ps 1011000000ps 1011200000ps 1011400000ps 1011600000ps l ‘
L 3 L J

u_cmsdk_apb_watcNdog

Browse design
hierarchy u_tmg

t rng_engine_i

Secure Information Flow

|y

¥ | & |mg_top_i
£ prng_top_wrap_i
P> |t | rng_misc_i
¥ | & trng_top_i
autocorrelation_i
crngt_to_trng_i
ehr_i

pmf_table_i

— No secure information flow

t | trng_balancefiltef_i
£ trng_collector_i

b |t [tmmg_reg_ file_i

t trng_sample_cnfr i
trng_sync_i

trng_tests_migc_i

rosc_i

rst_logic_i

slave_bus_ifc

High level view of information flow through blocks in the design hierarchy

accellera DVC@?&

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Waveform View

Source: sample_cnt1 register Protection Failure: sample_cntl

from TRNG is tracked flows to hrdatas

N— o

[Startup window xT « security_rules.as xT 2 m3 Run Results xT. m3: TRNG_CONF XTE m3: TRNG_b\ /r[m] / @@
Time(ps) 1010647871 ps | 1010300000ps 1 [&Jps 1010500000ps uir(-ovﬁ 1010700000ps 1qmaooooo}:s 1010900000ps 1011000000ps 1011100000ps m_nzoo{

CPUOHCLK 1 IEEEEEED Y s A e S e AR R S R S
(lengine i/rng top iftrng top i/trng reg file i/sample cntl] 0000AASS 0000AAS55

1
2r/u_beetle_peripherals_fpga_subsystem/u_trng/cc_paddr 130 looo (130
per/u_beetle_peripherals_fpga_subsystem/u_trng/cc_psel 0 |
r/u_beetle_peripherals_fpga_subsystem/u_trng/cc_prdata 00000000 [@ {0000AA55 J00000000
| u_iot_top/hrdatas| 0000AAS5 la0 00000000 \XOOOOAASS £00000000 {0000../00000000)2000..(00000000

u_iot_top/hreadys 1 | [

_fpgalsubsystem/u_beetle_apb_decoder_dtimer/secu re_i] 0

TDI == 1: Running in Un-privileged mode Destination: hrdatas

Lock bit: secure_i = 0 (Error)

Tracks the flow of information through signals in the design, shading in red
the secure information for easy debug

accellera Dvc@fu

SYSTEMS INITIATIVE

TRNG Decoder Bug

* Incorrect connection when generating cc_psel signal

1. psel valid o dependson

secure i and paddr i m3ds apb decoder # (.ADDR WIDTH(12))
[o Ubeetle apb decoder/trng ((
// Inputs
2. Access allowed: .psel i (TRNGPSEL i),
psel valid o == 1 IF .paddr_1i (TRNGPADDR i),
secure i == 0 AND .penable 1 (TRNGPENABLE 1),

- .pprot i (TRNGPPROT 1),

paddr_l == TRNG address .secure 1 (1’b0), // Lock bit not connected to control register
.pready 1 (1'bl),

3. secure i incorrectly tied to 0,

// Outputs
SI:\OIU|d have bee.n connected to lock .psel valid o (psel valid trng), //decoded psel to TRNG cc psel
bit in control reg|Ster .penable valid o (penable valid trng),//decoded penable to TRNG

.pready o (TRNGPREADY o)

4 . TRNG can now be accessed (read g
and written) in all modes including
unprivileged mode

SYSTEMS INITIATIVE

SRAM?2 Integrity Information flow

. ARM Core
Privileged Mode
DAP Cortex-M3
[* | wiC ETM TPIU
AHB AHB slave
-«
slave (MCC Code download)
EXPO EXP1 CM3DI CM3S
. o AHB
AHB Mux Legal: Read/Write SRAM?2 @ e
<< APB
AHB to AHB to YAHB to AHB to AHB Timer
SRAM SRAM SRAM SRAM Master Timor
i Flash — L "1 v
! AHB to | | [srRAMO| | srRam1| IsrRamM2] |SRAM3| | FPGA AHB Peripheral | — 3x reserved |
- SRAM | I APB x |
' -
: H master Dual timer
; =] | Memories paston|
: i 15 — UARTs |
Easssualiaae weaatel
TRNG —| Watchdog I
RTC

accellera DVlf@ngli

SYSTEMS INITIATIVE |UNITED STATES]

SRAM?2 Integrity Information flow

Unprivileged Mode ARM Core
DAP Cortex-M3
= | Wile ETM TPIU
AHB AHB slave
1 siave (MCC Code download)
EXPO EXP1 CM3DI CcM3S
. AHB
AHB Mux /llegal: Write SRAM2 @ o
< APB
AHB to AHB to | [JAHB to AHB to AHB Timer
SRAM SRAM SRAM SRAM Master Timor
= v
i Flash — L "1
E " ranBto | ! [sramo | | srAM1 | m | SRAM3 | | FPGA AHB Peripheral | — 3x reserved |
1 SRAM 1 APB
1 ! n
. t Dual timer
: i Memories ey iy |
: SRAME] 15 — UARTs |
Lassasatiaa, ee e il
" . TRNG Watchdog
Writing data into _{ I
SRAM?2 in unprivileged RLE
mode is illegal

SYSTEMS INITIATIVE

Steps to Create the Security Requirement

1. Identify the Asset Unpriviteged Mode
| DAP H Cortex-M3 |
e SRAMZ j_i — ‘ AHBlsmve | wiC H ETM || TPIU |
slave (MCC Code download) & ﬁ
2. Determine the Security Objective oo aferats—
® Integrity FLASHIMSRAMOMI SRAM ISR MBI SRAS B ExP0 Ml EXP 5 L=
3 Identify the Protecti Mechani EAlESIE RIEE A
: entity the Frotection iviecnanism o)] = e e
* FW programs the MPU for read only access | e
o S0 Protection Mechanism: MPU
by unprIVIIeged SW programmed to allow no write
access to SRAM2 in
Security Requirement unprivileged mode '
“SRAM?2 protected range must not be written by unprivileged SW ”
- _J - _J - j
~" ~ v
Asset Objective: Integrity Protection Boundary

SYSTEMS INITIATIVE

Converting Security Requirement to Abstract
Security Rule

Security Requirement

“SRAM_2 protected range must not be written by unprivileged SW
— L U\ _J
RS ' VY
Asset Objective: Integrity Protection Boundary
|

m MPU SRAMZ WR: assert iflow (I

- (CPU write transaction request) when

’ (SRAM2 address range AND unprivileged mode)
=/=>

‘ unless (SRAMZ not selected));

Keyword: Ignore/Flag failure

SYSTEMS INITIATIVE

Instantiating Radix Security Rule with RTL signals

MPU SRAMZ WR: assert iflow ((CPU write transaction request) when
(SRAM2 address range AND unprivileged mode)
=/=>
(SRAM2 write request)
unless (SRAM2Z not selected));

Source: Write access request from CPU Keyword Start Tracking

MPU SRAMZ WR: assert iflow (u iot top hwrites) when
((u 10t top.haddrs >= ‘h20010000) && (u 1ot top.haddrs < ‘'h20018000) && TDI)

=/=> =—— No flow operator J SRAM2 address range unprivileged mode
, Destination: SRAM?2

u iot top.SRAM2WREN __ write request J

unless — LGRSV RIS J

(u iot top.SRAM2CS) ; —RLGWPRINEEIELES J

SYSTEMS INITIATIVE

Radix S/M Verification Flow

Design RTL Design RTL Radix-S
Supports Any cor Sl Supports Any
Design: Environment:
VERILOG SYNOPSYS
VHDL ' Radix-S cadence

Runtime
SysternVerilog‘ Meg!osr
s./

Radix-M
Security Rules Emulation
Security

QUE

(~ v Monitor S‘/"UPS‘/S&)
requre) L) Generat’ n C 5 denc e°
AZBR RT %
IS0 |£ Gl Menbor

Rules

SYSTEMS INITIATIVE

Radix Security Rule Failed

Simulation Log file output

sources at time

[RADIX] -FAIL-

(1) time (s)

(1205880)

Security property assertion MPU SRAM2 WR failled at time

[RADIX] Total failures for security property <assertion MPU SRAM2 WR>:

1206000

(1)

[RADIX] Security property assertion MPU SRAMZ WR 1s tagging information flow from rule

— Occurred

Next Step: Analyze the Failure -
with dump data

SYSTEMS INITIATIVE

Waveform View of Failure

CPU unprivileged transaction
request is tracked

Protection Failure: unprivileged write request
flows to secure SRAM?2

Write Request

ITi me(ps) 12 05880018[\ 15800000ps /{900000[}5]10m lZIOEIOOOOOps 12‘062000005."5 1206300000ps 12.06400000[)5 12.0650000095 12066000

CPUOHCLK % I

TN
l u_iot_top/hwrites:]l | [
(u iot_top/SRAM2WREN]) 0 0 SXF \F 10

@] 20014000 00000000 {2000C0..} 20014000 {00000000
u_iot_top/htranss| 2 0 12 4 f 2 (o
Cm: -
(Lot top/sRAMICS) o

SRAM?2 address range

TDI == 1: Running in unprivileged mode

Waveform View tracks the flow of information through signals in the design,
shading in red the secure information for easy debug

accellera Dvc@ij

SYSTEMS INITIATIVE

SRAM Integrity Rule: Firmware Analysis

// Original Firmware

// Configure region 3 to cover CPU 32KB SRAM2 (Non-Shared, Normal, Not Exec, nPriv RO)

MPU->RBAR

0x20010000 | REGION Valid | 3;
MPU->RASR = REGION Enabled | NOT EXEC | NORMAL | REGION 32K | FULL_ACCE@

Error: Should be
NPRIV_RO

- Fix the Firmware, Recompile and Rerun

MPU->RASR = REGION Enabled | NOT EXEC | NORMAL | REGION 32K |{ NPRIV_ RO;

- Note: Security Monitor not recreated as RTL does not change

SYSTEMS INITIATIVE

SRAM Integrity: Comparing Failing and Passing
Test

Failing Test with Firmware Bug

Time(ps) 1205880018F 12.05300000;35 1205900000ps liA(‘QOOOOOOpS 12‘06100000[)5 12‘06200000ps 1206300000ps 12.06400000;)5 12‘06500000;)5 1206600(
CPUOHCLK| 1 g e ey | A e ey N) L e I = e T] SO e O[] S [t
u_iot_top/hwrites| 1 |
u_iot_top/SRAM2WREN| 0 0 XE fo
u_iot_top/haddrs| 20014000 00000000 (00000000
u_iot_top/htranss| 2 0 1o
TDI| 1
u_iot_top/SRAM2CS| 0 |
Failure: SRAM2CS is
influenced by hwrites
Passing Test with Fixed Firmware
Time(ps) 1205920797p5 12.05800000[.:5 12‘05900000;&5 12.06000000[.:5 12.0610000095 12‘06200000(:5 12‘06300000ps 12‘06400000ps 12‘05500000[:5 12‘06600000[15 1%0670000095
CPUOHCLK| 1 fl [l S] e L e (0 [] S e N ot O) | P L [[[[S] L]
u_iot_top/hwrites| 1 |] I
u_iot_top/SRAM2WREN| 0 0
u_iot_top/haddrs| 20014000 00000000 2000626014000 00000000 (00000000 J2000F..(2000.. J2000F..}2000F.. 2000F..}2000F..2000F.. 2000F..) 00000../ 00000000
u_iot_top/htranss| 0 0 2) 10 o \2 13 \2 I3 fo fo

TDI
u_iot_top/SRAM2CS

SYSTEMS INITIATIVE

1
0

Pass: After FW fix,
write request to

SRAM2 is not made by
Arm Core

(2022

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

Demo Summary

 Radix Flow

* Easily fits into existing simulation verification environments
 Automated and repeatable security process

e Radix Rule
 Completely captures security requirements

Radix Debug Analysis Views
* Information Flow Technology efficiently identifies root cause of vulnerability

e Radix Detects Security Violations

* TRNG example: Hardware incorrectly grounds lock bit — allows access in unprivileged
mode

e SRAM?2 example: Firmware incorrectly programs MPU — allows access to secure
memory in unprivileged mode

* These security bugs are hard to find using traditional functional verification tools

SYSTEMS INITIATIVE

Questions

SYSTEMS INITIATIVE

