
© Accellera Systems Initiative

Problem Statement/Introduction

Implementation Details/Diagram

Proposed Methodology/Advantages

Implementation Details/Flow Chart

Kilaru Vamsikrishna, Verification Architect, Cadence Design Systems

Sushrut B Veerapur, Verification Director/Architect, Cadence Design Systems

Building UVM Testbenches for High Quality Serial Design IPs
Modelling real world scenarios

Results Table Conclusion

REFERENCES

• Scenario class, act as control object to
synchronize all the layers of TB into ONE
common platform

• Scenario class prevents the mutually
exclusive scenarios and provides the fine
control and randomizes the legal
scenarios

The selection of the
background (BG)
sequence is controlled
by Test Config/Scenario
config

• Sequence is always active till the operation is
completed

• Runs in the background and does not block
any other sequences (called in fork
join_none)

• Do not raise and drop objections

• Handshake between each BG sequence and
rest of the TB

• Every BG sequence initiates the cause and
checks the effect of it

• Updates the status when in InProgress to
poll for end of the test

• Encapsulate the sequence controls

• Test Main Sequence  Virtual
Sequence  Layered Sequence  Actual
Data Sequence

• One common configuration object shared
across TB along with hierarchical
configurations

• Background sequence starts on a null
sequencer within the main/virtual
sequence

Every background
sequence is a virtual
sequence which starts
the actual data
sequence and drives
the sequence item on
the interface

Serial Design IPs are expected to be built for peak performance under less-than-
ideal operating conditions

In a directed test case based Testbench, stimulus is generally contained to driving
one or more primary data path interfaces, a register or control interface, and some
miscellaneous interfaces.

To generate stimulus targeting all the corners of the DUT, multiple virtual
sequences need to execute concurrently.

In a traditional approach traffic sequence running as primary sequence in
foreground must be changed to one of the background sequences to execute
multiple scenarios randomly.

Robust verification stressing the Design IP is a minimum requirement
• Mimicking real world traffic
• Mimicking real world feature stress cases
• Mimicking real world errors, low power, resets

Constraint Random “One-Test” Testbench Architecture

• Base test can create all possible test scenarios; built for true system-level
verification

• Randomization is built into the testbench

In a single test, combinations of errors, resets, low power and register tests will be
covered.

Some example real time scenarios which can happen randomly

• Resets  Errors  Registers  Low Power  Errors  Resets Registers

• Register access with traffic and functional test

• On the fly reset with traffic

• Good traffic mixed with error traffic

All scenarios which need to be intermixed with each other should start as a
background sequence

Testbench Requirements

On the Fly Reset Handling

• Every component and Sequence in the testbench is reset aware

• Resets are always monitored and takes the reset action based on the type of
reset(soft, hard)

• Handling of reset is implementation specific (kill the sequence/ Phase
jumps...etc.)

Fully random and fine control sequences

• Scenario configuration controls all the BG sequences

• Command line args package provides the desired control to sequences through
scenario and config objects

Base scoreboard

• APIs to turn off and turn on dynamically

• APIs to flush the scoreboard queues and reset scoreboard

• APIs to query the status

End of Test criteria

• Virtual sequence waits for every BG Sequence to be completed

• All the scoreboard Q to be empty

• Depends on the implementation specific and protocol requirements

• Guard every thread with a watch dog timer to avoid hang scenarios

This methodology is implemented to verify one of industry’s most
Complex Serial Design IP

Owing primarily to the methodology, multiple dependent cross
feature, and corner case scenarios issues were exposed in the RTL

Full randomization of legal scenarios with fine control is a key aspect
of the methodology

This methodology driven verification established that real work
stress scenarios can be well exercised in functional simulation of the
design

Though not impossible but it is quite inefficient to plan and
create all combination of intermixed scenarios

Efficient strategy would be to be push the problem to Testbench

• To exercise full legal space with more random combinations

• Layering sequences smartly that spawn multiple background
threads

Fine control knobs are mandatory to provide user control to
select scenarios

