
Boost your productivity in FPGA & ASIC
design and verification

Bart Brosens
Application Engineering Lead

● VHDL?
● Verilog?
● SystemVerilog?
● Mixed?Wikimedia Commons

Focus

simulation
synthesis

p&r
...

Most EDA tools
Focus on chip

More productive
Focus on user

read
write

modify

Focus

simulation
synthesis

p&r
...

Most EDA tools
Focus on chip

More productive
Focus on user

read
write

modify

“Upfront Verification” : you design, we verify, let’s keep moving.

Topics

● Upfront Verification

● Project Exploration

● VS Code extension

● CI/CD

Topics

● Upfront Verification
○ Direct feedback
○ Language aware code checks
○ Intelligent content assist

● Project Exploration

● VS Code extension

● CI/CD

Upfront Verification

Direct feedback
User-focused - relevant
No need to switch context

Edit sources

Feedback

Edit sources Run tool

Feedback

Upfront Verification

Language aware code checks

● Code validation: Checking whether code is syntactically correct
● Code linting: Checking for problems in syntactically correct code

○ programming errors
○ bugs
○ stylistic errors (coding and naming style, indentation, header comments…)
○ suspicious or problematic constructs

Upfront Verification

Intelligent content assist

● Quick Fixes to resolve common language issues
● Help with a consistent formatting of your code
● Use templates for common declarations and statements
● Use the content of the project to suggest appropriate identifiers as

autocompletion candidates

Upfront Verification

Demo

Upfront Verification

Demo

Topics

● Upfront Verification
● Project Exploration

○ HDL objects -> hyperlinks
○ Hovers show information
○ Multiple views for more insight

● VS Code extension

● CI/CD

Project Exploration

HDL objects -> hyperlinks

● Select Identifier then
○ Right-Click “Open Declaration”
○ F3

● Hyperlinks
○ Hold Ctrl and Click on Identifier

Project Exploration

Hovers show information

A tooltip shows information about a
data object. No need to navigate away
from the code.

● Object definition
● Object type
● Useful hyperlinks

Project Exploration - views

Multiple views for more
insight

Views highlight
particular aspects of
the project

Some examples
in the next slides

Project Exploration - views

Views help navigation

● View editor

Double-click in view editor opens corresponding code

● Editor view

Enable or disable link between view and editor

If enabled: view highlights element being edited

Project Exploration - views

Outline View (single file)
● Libraries
● Entities
● Modules
● Architectures
● Ports & signals
● Assignments
● Instantiations
● Processes

Project Exploration - views

Hierarchy View (entire design)

● Similar to outline view
● Spans multiple files

Navigation:

● Hierarchy => editor
● Editor => hierarchy

Project Exploration - views

Dependencies between files in a project

Configurable scope & details

Navigate from the dependencies view to
the editor

Project Exploration - views

● Overview of all libraries in a project
● List of design units in libraries
● Navigate between libraries view and editor

Project Exploration - views

List of errors and warnings in open projects in the workspace

● Navigate to editor
● Apply Quick Fix

Project Exploration - views

List of tasks in open projects in the
workspace

● Configurable tags: TODO,
FIXME, ...

● Navigate to editor

Project Exploration - views

SystemVerilog class hierarchy

Overview of

● (derived) classes
● Members

Navigate to editor

Project Exploration - views

Preprocessor View shows file in the editor, after
preprocessing

● Include files are included
● Preprocessor macros expanded

Focus of editor and preprocessor view are linked

Project Exploration - views

Block diagram

● Navigation
● Documentation

Project Exploration - views

State machine

● Navigation
● Documentation

Project Exploration

Demo

Project Exploration

Demo

Topics

● Upfront Verification

● Project Exploration

● VS Code extension
○ Learning from software world
○ Language Server Protocol (LSP)
○ Available on marketplace

● CI/CD

VS Code extension

Learning from Software IDEs:

● The Software industry is much larger by number
of engineers than the Hardware industry

● Wider market drives larger tool investments
● Adopting Proven Software Practices to Hardware

needs is a common trend (i.e., version control,
linting, coverage, unit testing)

● Software IDEs are currently a decade ahead
● Catching IDE trends from Software is a natural

evolution path for the Hardware domain
www.broughtonsoftware.com

Language Server Protocol (LSP)
Pre-LSP: Every Language x Every Editor

N x M

LSP: Editors and Language Servers Decouple

N + M

Suggested by Microsoft, adopted by many vendors
images: medium.datadriveninvestor.com

LSP: a Unified IDE-to-Server Protocol
LSP Highlights:

● LSP is a high-level message protocol defining typical
operations/requests about documents, positions,
ranges

● IDE-agnostic & Language-agnostic

● Covers IDE operations: hover, auto-complete, jump
to definition, error checking, formatting, refactoring,
folding, ...

● Language servers provide rich editing capabilities
(not necessarily all of them)

● At low-level based on JSON-RPC communication,
standardized message exchange structures and
sequences

https://langserver.org/

code.visualstudio.com

VisualStudio Code: LSP-based tool example
VisualStudio Code

● Cross-platform browser-like app
● Free & Open Source
● Highly customizable with extra plugins
● Supports numerous languages (via LSP)
● Most editing capabilities of desktop IDE, but

lightweight in nature
● Targets small projects / components,

most popular for web-frontend parts

Other references
● Eclipse Theia
● Atom
● IntelliJ

● Sublime
● Vim + LSP
● Emacs + LSP

Sigasi Language Server

Sigasi LSP: VS Code extension

LSP

www.sigasi.com/vscode/

VS Code extension

Demo

VS Code extension

Demo

Topics

● Upfront Verification

● Project Exploration

● VS Code extension
● CI/CD

○ Same rules as in Sigasi Studio (Eclipse and VS Code)
○ Align your team
○ Gatekeeper for the CI/CD flow

CI/CD

Learning from Software IDEs methodologies:

● The Software industry is much larger by number of
engineers than the Hardware industry

● Wider market drives larger tool investments
● Adopting Proven Software Practices to Hardware

needs is a common trend (i.e., version control, linting,
coverage, unit testing)

● Software IDEs methodologies are currently a decade
ahead

● Catching IDE trends from Software is a natural
evolution path for the Hardware domain

www.broughtonsoftware.com

CI/CD

Demo

CI/CD

Demo

Try it yourself

Explore on your own code what you’ve seen.
Get your free trial of Sigasi Studio XPRT on:

sigasi.com/try

pxhere.com

Questions?
You can contact me on
bart.brosens@sigasi.com or support@sigasi.com

