
BatchSolve: A Divide and Conquer
Approach to Solving the Memory Ordering

Problem
Debarshi Chatterjee, Ismet Bayraktaroglu, Nikhil Sathe, Kavya

Shagrithaya, Siddhanth Dhodhi, Spandan Kachhadiya

Memory Ordering Problem
• Given the Issue Order of MemOps, can we

find a Global Order that satisfies all the
Ordering Rules?

• Notion of Global Order: To an external
observer, the MemOps appear to happen in
this Order.

• Ordering Rules
• Memory Consistency Models

• Deadlock Avoidance Rules

• Micro-Architectural Specifications

SRC1 SRC2

ST1(A)X LD1(A)X

ST2(A)Y LD2(A)Y

SRC1 SRC2

ST1(A)X LD1(A)Y

ST2(A)Y LD2(A)X

GO: ST1, LD1, ST2, LD2 

GO: ST2, LD2, ST1, LD1

GO: ST1, LD2, ST2, LD1 

GO: ST2, LD1, ST1, LD2 

Issue Order

Issue Order

Example Ordering Rule: MemOps from same
source must appear in GO in the same order

as the appear in issue order

Execution 1: Legal

Execution 2: Illegal

Prior Work
• Naïve Approaches

• Point of Serialization Snooping (POSS)
• Basic Idea: Get hints from RTL to obtain GO

• Pros: Good Coverage, Linear Time Complexity

• Cons: Portability, Dev. & maintenance cost

• TSO Tool [Hangal et al., ISCA 2004]
• Assumption: Unique store Data

• Basic Idea: Construct Graph and check for cycles

• Pros: Reasonably good coverage, Polynomial
Time Complexity

• Cons: Random atomics, not amenable to
arbitrary ordering rules

SRC1 SRC2

ST1(A)X LD1(A)Y

ST2(A)Y LD2(A)X

Issue Order

ST1

ST2

LD1

LD2

Execution 2: Illegal

Edge Color Coding
Blue : Issue Order Dep. Edges
Green : Observed Dep. Edges
Orange: Inferred Edges

Motivation and High-Level Idea
• Need an ordering checking scheme with following:

• Portable (Horizontal and Vertical Re-use)

• Low Cost (Low Dev. And maintenance Effort; Immune to Arch. changes)

• Flexible (Amenable to various ordering rules – PCIE, NVLink, other Link based
rules)

• BatchSolve - High Level Idea:
• Specify Ordering Rules as high-level SV constraints

• Formulate the problem so that SV solver can handle it

• How do we address scalability issues? – Stimulus Batching

BATS – Integration into UVM Architecture

BATS – Stimulus Batching

Stimulus Batching - Continued
Issue-Time SRC MemOp Sector-0 Sector-1 Sector-2 Sector-3 Count STATE Batch-num

T1 SRC1 Wr1 Wr1-C0 Wr1-C1 Wr1-C2 1 EMPTY 0

T2 SRC1 Rd1 Rd1-C0 Rd1-C1 2 EMPTY 0

T3 SRC2 Wr2 Wr2-C0 Wr2-C1 Wr2-C2 Wr2-C3 3 EMPTY 0

T4 SRC2 Wr3 Wr3-C0 Wr3-C1 Wr3-C2 4 EMPTY 0

T5 SRC2 Rd2 Rd2-C0 Rd2-C1 Rd2-C2 Rd2-C3 5 EMPTY 0

T6 SRC1 Rd3 Rd3-C0 Rd3-C1 Rd3-C2 Rd3-C3 6 EMPTY 0

T7 SRC1 Wr4 Wr4-C0 Wr4-C1 Wr4-C2 7 EMPTY 0

T8 SRC2 Wr5 Wr5-C0 Wr5-C1 Wr5-C2 Wr5-C3 8 EMPTY 0

T9 SRC2 Rd4 Rd4-C0 Rd4-C1 Rd4-C2 9 A-FULL 0

T10> T9 + ∆ SRC1 Rd5 Rd5-C0 Rd5-C1 Rd5-C2 Rd5-C3 10 FULL 0

T11 > T10 + ∆ SRC1 Wr6 Wr6-C0 Wr6-C1 Wr6-C2 1 EMPTY 1

T12 SRC2 Wr7 Wr7-C0 Wr7-C1 2 EMPTY 1

Spaced

Read

SV Solver – Sample Input
SRC UID MemOp Sector-0 Read Data Rcvd Byte Enable Write Data

Byte-0 Byte-1 Byte0 Byte1 Byte0 Byte1

0 - Dummy Init Wr 1 1 I1 I2

T1 SRC1 1 Wr1 Wr1-C0 1 1 X1 X2

T2 SRC1 2 Rd1 Rd1-C0 X3 X4 1 1

T3 SRC2 3 Wr2 Wr2-C0 1 1 X3 X4

T5 SRC2 4 Rd2 Rd2-C0 X3 X4 1 1

T6 SRC1 5 Rd3 Rd3-C0 X7 X4 1 1

T7 SRC1 6 Wr4 Wr4-C0 1 1 X5 X6

T8 SRC2 7 Wr5 Wr5-C0 1 0 X7 X8

T9 SRC2 8 Rd4 Rd4-C0 X5 X6 1 1

T10 SRC1 9 Rd5 Rd5-C0 X5 X6 1 1

MemOp at issued at

T4 on SRC2 is omitted

because it does not

have a child to sector0

for which ordering is

being tested

SV Solver – Sample Output
Issue-

Time

SRC UID GO Sector-0 Read Data

Rcvd

Byte Enable Write Data

Byte-0 Byte-1 Byte0 Byte1 Byte0 Byte1

0 - Dummy Init Wr 1 1 I1 I2

T1 SRC1 1 Wr1 Wr1-C0 1 1 X1 X2

T3 SRC2 3 Wr2 Wr2-C0 1 1 X3 X4

T2 SRC1 2 Rd1 Rd1-C0 X3 X4 1

T5 SRC2 4 Rd2 Rd2-C0 X3 X4 1 1

T8 SRC2 7 Wr5 Wr5-C0 1 0 X7 X8

T6 SRC1 5 Rd4 Rd4-C0 X7 X4 1 1

T7 SRC1 6 Wr4 Wr4-C0 1 X5 X6

T9 SRC2 8 Rd4 Rd4-C0 X5 X6

T10 SRC1 9 Rd5 Rd5-C0 X5 X6 1 1

Rd1 inferred to

be ordered after

Wr2

Rd4 inferred to

be ordered after

Wr2 and Wr5

Notice in UID

column

MemOps from

same SRC

appears in

issue order

Inside the Solver – 1

Input Matrix I:
MemOps in issue order

Row Permuted
Random Matrix P:
MemOps in GO

Ordering Rule as Constraints

Inside the Solver - 2

Input Matrix I:
MemOps in issue order

Row Permuted
Random Matrix P:
MemOps in GO

Random Matrix M:
Mimics memory value after
exec of corresponding row of P

Ordering Rule as Constraints
GO Constraints

P_be[i][j] P_data[i][j] M[i][j]

Inside the Solver - 3

Input Matrix I:
MemOps in issue order

Row Permuted
Random Matrix P:
MemOps in GO

Random Matrix M:
Mimics memory value after
exec of corresponding row of P

Ordering Rule as Constraints
GO Constraints

P_be[i][j] P_data[i][j] M[i][j]

Inside the Solver - 4

Input Matrix I:
MemOps in issue order

Row Permuted
Random Matrix P:
MemOps in GO

Random Matrix M:
Mimics memory value after
exec of corresponding row of P

Ordering Rule as Constraints
GO Constraints

P_be[i][j] P_data[i][j] M[i][j]

BatchSolve – Advanced Topics
• Atomic Handling

• Replace Function calls with explicit SV
constraints

• Barrier Handling
• Using “Rules” determine which MemOps

should be ordered before the Barrier and
which should be ordered after it (some
MemOps can be neither)

• Remove the Barrier and draw edges from
every MemOp in Sbefore to every MemOp
in Safter

• These edges are created in
pre_randomize and introduced as
constraints to the SV solver

Sbefore

Safter

Barrier

Sample Rule: Reads issued after membar-ack
from same or different source (as that of
membar) must be ordered after the membar

Ordering edge

Ordering edge

Direct
Ordering
Constraint

EDA Playground Demo Links
• Link to simple DEMO (Reads/Writes/Atomics)

• https://www.edaplayground.com/x/rXKN

• Example of an execution for which GO exists and one for which it
does not

• Link to advanced DEMO (Barrier Handling)

• https://www.edaplayground.com/x/DsUc

• Examples of legal and illegal execution with barrier

https://www.edaplayground.com/x/rXKN
https://www.edaplayground.com/x/DsUc

Results

POSS BATS
Init Develop

effort

80 weeks 8-weeks

Maintenance

effort per

project(estimat

e)

80 weeks 0-1 weeks (not

including debug)

Porting effort to

other UVM TB

Not portable

easily

1 week (assuming

TB has some score

boarding)

Conclusion and Future Work
• BATS Pros

• Low Development Cost

• Low Maintenance Cost

• Easily Portable

• Easy to specify ordering rules as high level SV constraints

• BATS Cons
• Slight Coverage loss due to Batching

• Slight increase in runtime

• Future Work
• Can a re-formulation such as convex relaxation allow to increase Batch-Size?

Thank you!

