BTN & AGNISYS

EEEEEEEEEEEEEEEEEEEEEEE
SYSTEM DEVELOPMENT WITH CERTAINTY

Automatic generation of Programmer Reference
Manual and Device Driver from PSS

Freddy Nunez
AGNISYS

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

The State of Verification in 2023

Biggest functional verification challenge

Percentage of ASIC Project Time Spent in Verification

50%-60%

Number of spins before production
Decline in first silicon success combined with increasing wafer and mask cost

Most development time spent in verification
* However, respins per project still increasing

76% -
* Greatest verification challenge (by far)...
e | I | i creating sufficient tests
Nk .
' e e Source: Wilson Research Group 2022, courtesy Siemens
EDA

e AGNISY

LOPMENT WITH CERTAINTY

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

HW/SW Interface of a Typical SoC

&
g

C/C++
Program

Assembly

Full SoC now requires
HW/SW Interfacing
(HSI) Complex VIPs

and SW/HW Test

content

AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

Memory
—0
Sensors
a S a
\ 4 A\ 4
y
Interrupts
3

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

—0

Sensors

Programable
Reqgisters

Challenges Development Teams Face with Sequences

Inconsistent definition

Sequences are

(-Seltlnéence is r:o(tjclear or\ of Sequences Industry Standards — IP- everywhere
well documente XACT, SystemRDL,
A sequence works on In-exact definition RALF - Architects/designers
ophe platform and not on - Inconsistent .Custom formats — CSV, plan them
other .Desi i
-No way to create the interpretation . :Exce_l, XSM - f t (?r?csolgg \e/ré?illrcl)(;ers
same debu ; t -Incorrect implementation -IDesignSpec formats — ¢ €
ebug environmen IDS-NG, IDSWord, functionality
on multiple platforms IDSExcel -Verification engineers
write them in UVM or
. N 4 \Elll Scquences contain PSS
Register data that can - J

Has this ever

i fi :
happened to you? be in any format

.-‘ AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

An Ildeal Solution

» Describe the programming and test sequences of a device

and automatically generate sequences ready to use from an :> s i
early design and verification stage to post silicon validation

« Centralize creation of sequences from a single specification
and generate various output formats for multiple SoC teams

— SVIUVM, PSS, C, CSV or MATLAB

— PDF or HTML
» Specify portable sequences for multiple IPs at a higher level
in-sync with the register specification ?mé’vﬁ{'ffvw »
« Use register descriptions in standard formats such as IP- : ﬁf??n%i‘:’h“'?:’m"‘
XACT, SystemRDL, RALF or leverage IDesignSpec™ e
integrated flow to use the register data i

« Sequence constructs include loops, if-else, wait, arguments,
constant, in-line functions

.-‘ ﬁmgﬂmgéx& Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. S

What does a common sequence specification need

- Like pseudo code

- Control flow .« Metainformaton |
- Register read/writes | « Arguments
- Signal or interface read/writes | * Parameters
- . : ! » Variables

- Ability to execute arbitrary transactions , . Enum
- Deal with timing differently i - Define

« A millisecond on the board takes a very long time to simulate : « Macros
- Deal with hierarchy | * Structures

- Design hierarchy IP/SoC ST |
« Sequence calling other sequences

Parallelism

« Sub-system or SoC Level

« Multiple interfaces at IP level

« Between Environment and the Device

.-‘ QMQEMN!éX?w Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 6

The Accellera Portable Stimulus Standard

=Ee : : : e S : Accellera’s PSS committee was formed to drive a
(Integration) iehitas HW Analog swW Verification | SW Test P\‘/".‘s'tlasa"t"%‘;‘" . .
- || Developer | Developer | Developer | Engineer || Engineer | mgineer | COMMoON standard for modeling stimulus that could be
Middleware
(Graphics, Audio, R TR ETRET | p_o_rted between simulation, emulation and fabricated
0S & Drivers 3);:%:@%':%[:;/&?"13!111(5 \F?: :tailrlnz:tll’z.:table Semantics ‘ Sl I Iicon.
, v f
Bate Metal W ’ T ket i This stimulus methodology could drive block level
Rl I &= simulation as well as embedded software tests for SoC
— 3 !N ' 3 3 designs.
2 < Tests | | Tests ‘ . Tests ‘ 1| Tests } . Tests
P Verification Environment For more detail of PSS, please visit Accellera PSWG
l UML/SysML ‘ SystemC s C/CH+ AMS page.
Platform
mal Platform } Simulation Emulation FPGA Prototype Silicon Board
Proposed Portable Stimulus Specification (Courtesy: Accellera Systems Initiative)
.-‘ Q&LMN!glﬁ Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 7

PSS (Portable Test and Stimulus Standard)

The Portable test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration. With this
standard, users can specify a set of behaviours, from which multiple implementations may be derived.
e PSS has constructs for
o Modelling Data flow (Buffers, Streams, States)
o Modeling Behavior (Actions, Activities, Components, Resource, Pooling)
o Constraints, Randomization, Coverage
e PSS is useful for SoC high-level test scenario creation

A concept of defining Registers and Sequences has been introduced in PSS2.0. Currently, three
accesses are supported i.e., Read-Only, Read-Write, Write-Only.

IDS-Validate helps in generating the PSS register model through various inputs supported by IDS
such as SystemRDL, IP-XACT, IDS-NG, Word, Custom CSV etc

- SYSTEM DEVELOPMENT WITH CERTAINTY

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

What does a sequence generation need

» Create a variety of output formats
 Flexibility in how Read/Writes are generated

» Output specific
* UVM : font door/back door / peek/poke
« C/C++ : Consolidated read/write
« Test/Validation : Multiple test sites — for testing multiple chips simultaneously
» Target platform may not support hierarchy, loops, variables

.-‘ ﬁgﬂmgﬁlﬁ Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

.-$

SystemRDL (System Register Description Language)

« accellera — Standardized by the SystemRDL Working Group.

https://www.accellera.org/activities/working-groups/systemrdl/

» “Excerpt from “Introduction”

The SystemRDL language was designed specifically for describing and implementing registers and memory.
SystemRDL allows developers to automatically generate and synchronize register specifications in hardware
design, software development, verification, and documentation.

The purpose behind language standardization is to significantly shorten the development cycle for hardware
designers, hardware verification engineers, software developers, and document developers.

intended to be applied for the following purposes
— RTL generation & Validation
— Document

— Pass information to other tools such as debuggers

— Software development (Register info.)

AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

addrmap blockl {

reg myReg #(longint unsigned SIZE = 32, longint unsigned $P1 = 1)
regwidth = SIZE; //documentation level parameter

ispresent= $P1l; //output level parameter

field {

} datal[SIZE-1]:; //parameter used in expressions

b

struct my_struct {
string foo :
string descl;

o

//structures

10

https://www.accellera.org/activities/working-groups/systemrdl/

Register Implementation in Hardware Design

» Characterized by a large number of control Register: Block_b1_config
. Address: Oxa0005001
a.nd status I’egISteI‘S Purpose: Configuration of the B1 block.

Fields : F1, F2

* Registers are important for making the [— R T —

chip/IP configurable.

« A configurable chip/IP is more versatile, and

Field: F2 Field: F1
generates Iarger ROI. Purpose: Turns Purpose: Turns
functionality F2 onfoff functionality F1 onfoff
. access
« Supported Register Buses :
@ PROPRIETARY [—
xma - Chip
@ AMBA AXI4FULL @ ocr data 1/0

@ 2Cte @ TieLink i ek Block 3lock]

. AMBA-AXISLITE

.-‘ AGNISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 11

SYSTEM DEVELOPMENT WITH CERTAINTY

.-‘

SystemRDL & Agnisys Innovations

A wide range of special registers are
only supported by AGNISYS

AGNISYS

SystemRDL
2.0

SystemRDL

1.0

AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

Agnisys Enhancements
Special features for use by customers

Constructs given by Accellera
SystemRDL 2.0 committee.

Has many constructs so that user can
create whole spec in less time.

Some of the old construct that are
already been used in the industry.
Includes preprocessor, components,
limited special registers.

Agnisys Copyright 2024. All Rights Reserved

Multi - dim S

array processor
More SW enum

access

Limited
Memory special
component and registers

much more

UVM constraint Building
Verification
coverage blocks
constructs hdl_path

Special
Registers

. COMPANY CONFIDENTIAL. 12

SystemRDL Register Model

In a SystemRDL (Register Description Language) specification, you can specify various information about

registers. Here are the typical pieces of register information you can specify in SystemRDL.:

Register Name: Give a uniqgue name to each register.

Register Address: Define the memory-mapped address where the register is located.

Register Access Type: Indicate whether the register is READ-ONLY, READ-WRITE, or WRITE-ONLY.
Register Description: Provide a textual description or comment to describe the purpose and
functionality of the register.

Register Width: Specify the number of bits that the register contains.

Register Fields: Define individual bit fields within the register, including their names, bit offsets, and bit
widths.

Field Descriptions: Describe the functionality and purpose of each individual field within the register.

Reset Values: Specify the default values for the register and its fields after a reset or power-up.

.-‘ AGNISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 13

SYSTEM DEVELOPMENT WITH CERTAINTY

SystemRDL Register Model

e Access Permissions: Define the permissions or access rights for the register and its fields, specifying who
can read or write to them.

e Interrupt Information: If the register is related to interrupts, you can specify interrupt-related information
such as interrupt enable bits, clear-on-read flags, etc.

e Reserved Bits: Indicate whether any bits in the register are reserved and should not be modified.

e Test and Debug Features: Specify any test and debug-related features associated with the register.

e Register Dependencies: Describe any dependencies or interactions between this register and other
registers in the system.

e Address Regions: If applicable, specify the address regions or memory-mapped spaces where the register
resides.

e Aliases: Define any alias names or alternative names for the register.

e Synchronization and Timing: Describe any synchronization or timing requirements for reading or writing to

the register.

.-‘ AGNISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 1

SYSTEM DEVELOPMENT WITH CERTAINTY

PSS Register Model

In PSS the Register model we can have limited register info as we can only defined these five info in PSS

register Model

e Register Access -- READ-ONLY , READWRITE, WRITE-ONLY
e READ value and WRITE value MASK

e Register width

e Register offset value

e Address Region/Memory Region

e Reset value and Reset Mask

- SYSTEM DEVELOPMENT WITH CERTAINTY

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

15

|IDS-Validate (PSS Support)

e PSS 2.0is a new* industry standard created by Accellera
e Agnisys is a working group member & contributed to standardization

Expertise in creating the Realization Layer
e Widest/ Most comprehensive Register/Memory definition
e Pioneer in Sequence/Functions for IP/SoC

Agnisys offers
e Use PSS (or Excel, Python, GUI (NG)) to create Golden
Spec for Sequences
e Generate C functions and UVM Sequences

Functions Registers

Key Benefits Procedural Memory R/W
e Single Golden Source for Registers and Sequences Statements
reduces Time to Market, improves quality

Realization Layer

Copyright 2014-2023 Matthew Ballance. All Rights Reserved

.-‘ Q&LMN!glé Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 16

PRM (PROGRAMMER’S REFERENCE MANUAL)

Agnisys has developed a Programmer's Reference

Manual (PRM) that serves as a comprehensive Programmer's Reference Manual e et 176200 G
documentation resource for programming sequences [seqTabuiarvies Heirachical Path : /spc_filt sezs

and hardware architecture. It is intended to be a key

reference for programmers, developers, and Snbl ., ., Block : spc_filt_regs
individuals seeking a detailed understanding of the

Generated from: home

.)) J . I wpe_filt_rezs - Table of Ci
intricacies of specific technologies g e SNo. | Names
. , . . wpe_ctrl g0 1 |plock - spc_filt_regs
Agnisys' PRM comprises three views that are S el it 1; rog - spc_sta ver
.. spe_ctl req fr!
beneficial for users: S e s iE e spe_chl_adid
. :_stat_done | 1
1. Register View: This view provides complete B e e g i oo seeor el
. . . 1= i t_bmer stab T . i
information on register and memory data. B 18 PRI
2. Sequences Tabular View: This section g T e i e
presents detailed information about sequences D m—,@g_sn_cs_a:t%
! i s =z |reg | spc_cirl_1 cfri
in a tabular format. Users can conveniently g T 112 Ireq - spe_dmapspe fifo_status
. . g tmer 1.13 | 2dma_{if
track and access information related to each 3 e i o 14 lon. Soe s e oo oner
spc_outhfo_m count 118 I . i 1] T
sequence. 5 st (R — YT
3. Flowchart View: This view includes a & AL oy e b
graphical representation or flowchart illustrating B sermgind 0 .19 Ireq : spe_ai_pwr
B we corbrd 1 1.20 [reg - spc_len

the sequences, offering a visual understanding
of the information flow.

.’ AG N ISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 17

SYSTEM DEVELOPMENT WITH CERTAINTY

Sequence Tabular view

Programmer's Reference Manual

o —

.0 AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

aa

Table of Content

[lock :spe_ilt sogs

e

1.84.1 : spc_filter_init
1P ; breakl.idsng

Value
Name Value
i
i 0
fz 5
[
| Command I step
dien
whie (spc_cr_pur_ch_en == 1]{
st e en
e spc Jenl.
[spe_otn_pur o eni{
fconinge
[sey
F
Pﬁ-ﬁxu,ms,.%u
[stl_var 2 et
e Tspe,_etl_aaded od_stan_sdar_ish]

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

18

Flowchart view

Created by:
IDesignSpec rev: idsbarch v 7.78.0.2

Programmer's Reference Manual

Foamrvo R s J

Generated by:

Generated from: home vikash/avea/break_test/break] idsng

saabu

General

Table of Content

Names

Back
INDEX
s : S5.No.
& ope st seps
a spe_filter_mit
= breakl

.0 AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

_l: lock - spe_fili_regs

spc_ctrl_pwr_clk_en ==

Ispc_ctrl_pwr_clk_en

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 19

Device Driver

Device drivers act as intermediaries, translating high level commands from software into instructions
that the hardware components, particularly semiconductor devices, can understand and execute. They
provide a standardised interface for software applications, shielding them from the intricacies of the
underlying hardware.

Functions of Device Drivers in VLSI:

a. Abstraction and Interface: Device drivers abstract the complexity of semiconductor devices,
presenting a uniform interface to higher-level software. This abstraction shields software developers
from the low level details of hardware implementation.

b. Initialization and Configuration: Drivers are responsible for initializing and configuring semiconductor
devices during system startup. This involves setting parameters, establishing communication channels,
and preparing the hardware for operation.

c. Data Transfer Management: Efficient data transfer between software and semiconductor devices is a
critical function of device drivers. They manage the flow of data, handle buffering, and ensure the
integrity of information exchanged between the software and hardware components.

.-‘ AG N I SYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 20

SYSTEM DEVELOPMENT WITH CERTAINTY

An Example

action Status_control {

MACHINE_STATUS_REGISTER_reg_s status_reg ,;

exec post_solve {
status_reg.5LEEP_MODE_STATUS=1;
status_reg.FREQUENCY_STATUS=1; PSS SEQUENCES
status_reg.POWER_ON_RESET_STATUS=1;

status_reg.VOLTAGE_CONTROL_STATUS=1;

¥

exec body {
message("” Checking for status registers ");
while(status_reg.MACHINE STATUS REGISTER.read().POWER_ON_RESET STATUS==8) {
message("Checking wheather status reg is set on not™);
comp.regs . MACHINE_STATUS _REGISTER.write.WOLTAGE_CONTROL_STATUS(status_reg);

if{ MACHIME_STATUS_REGISTER.read().SLEEP_MODE_STATUS == @ && MACHIMNE_STATUS_REGISTER.read()
comp.regs.MACHINE_STATUS_REGISTER.write(contr_reg);
message(" ALL STATUS REGISTER ARE RESET ");

.-‘ AG N ISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

SYSTEM DEVELOPMENT WITH CERTAINTY

C - FIRMWARE OUTPUT

int status_control() {

int MACHINE CONTROL REGISTER ENABLE;

int MACHINE_ STATUS_REGISTER_SLEEP MODE_STATUS;

int MACHINE_STATUS_REGISTER_POWER_ON_RESET_STATUS:
int MACHINE STATUS REGISTER FREQUENCY STATUS:

FIELD WRITE (Machine power controller MACHINE STATUS REGISTER ADDRESS, Joooz,
MARCHINE POWER CONTROLLER MACHINE STATUS REGISTER 5 LE'.EP_HDDE‘._SIATUS_DFFSET] H

FIELD WRITE (Machine power controller MACHINE STATUS REGISTER ADDRESS, Q0008 ,
MACHINE POWER_CONTROLLER MACHINE STATUS REGI S'IER_FBEQU‘E‘.NC‘E_STATUS_DFFSET] H

FIELD WRITE {Machine power_controller MARCHINE STATUS REGISTER ADDRESS, 00020,
MRCHINE POWER_CONTROLLER MACHINE STATUS REGI S'IER_PDHER_DN_RESET_SIAIUS_DFFSEI] H

FIELD WRITE (Machine power_ controller MRCHINE STATUS REGISTER ADDRESS, Q0040,
MRCHINE POWER CONTROLLER MACHINE STATUS REGISTER VOLTAGE CONTROL SIMUS OFFSEI] :

f/ Call firmware print method

printf("Checking for status registers™,):

.‘ AG N ISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

SYSTEM DEVELOPMENT WITH CERTAINTY

22

UVM OUTPUT

Class : Machine power controller EEQUEST CONTROL_REG
DESCRIPTION:—
__ x ll."
J*ifndef CLASS Machine power_controller REQUEST_CONTROL_REG
‘define CLASS Machine power_controller REQUEST CONTRCL REG
“lclass Machine power_ controller REQUEST_CONTROL_REG extends uvm reg:
“uvm_ocbject_utils (Machine power controller REQUEST CONIROL_REG)
rand uvm_reg_fisld REQ_CONTR:/ *%/
S/ Functiom : new
B function new(string name = "Machine power controller REQUEST CONTROL EREG™) ;

super.new {(name, 32, build_cowerage (UVM_NO_COVERLGE)) ;
add_cowerage (build_cowerage (UVM_NO_COVEBRGE)) :
|- endiunction

ff Function : kbuild
B virtual function woid build() :
this.REQ _CONIR = uvm _reg field::type_id::create ("REEQ_CONTIR"™) :
this.REQ CONTR.configure(.parent(this), .size(l), .lsb_pos(l), .access("EW"),

= endfiunction
—endclass
—‘endif
6
Class : Machine power_ controller ACENOWLEDGE REG
DESCRIPTION: -

- ifndes CLASS Machine power controller ACENOWLEDGE REG

‘define CLASS Machine power controller ACEKNOWLEDGE REG
Jelass Machine power controller ACENOWLEDGE REG extends uvm reg:
“uvm_object _utils (Machine power controller ACEKNOWLEDGE REG)

rand uvm reg field UNDERVOLTAGE OR OVERVOLTRGE ;/**/
rand uvm_reg_f£fisld SHORT_CIRCUIT:/**/
rand uvm reg fisld POWER _FRIL:/ %%/

.-‘ AG N ISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

SYSTEM DEVELOPMENT WITH CERTAINTY

]
g

Agnisys® PSS Compiler

AG N ISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

SYSTEM DEVELOPMENT WITH CERTAINTY

24

Possible Outputs From PSS Flles Tests

IP XACT
PSS - SystemRDL
files —> YAML, XML
. Hl.é.r-a.r.c.t;;(.:-al

Sequences & Register Map

Registers | |
HTML Flow Chart
Reglsters Reg Abstractlon Registers Registers Sequences
Layer
2. RunEnv —) Verification (SV/UVM based) Validation (C/C++ based)
3. Tests |:> 1. Automatic Reg tests 1. Automatic Reg tests
2. UVM based PSS tests 2. Cbased PSS tests
4. Misc :> Custom outputs *Makefile,
. (Velocity Template based) *main.c
-‘ ﬁmgamjvélév Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. .

PSS Editor

This new addition enables you to work with PSS files, create and edit
portable stimulus models and tests with ease and ensures a
seamless experience for engineers and testers.

Key Features:

1. PSS File Management: Create new PSS files, open existing
ones, and organize your project resources in a user-friendly
interface.

2. Syntax Highlighting: Syntax highlighting and code formatting

3. Code Navigation: Features like code folding, context-aware code
suggestions, and jump-to-definition functionality.

4. Validation and Semantic checks: Utilise built-in validation and
debugging tools to ensure your PSS models and tests adhere to
industry standards and functional requirements.

5. Search and Replace: Quickly find and replace elements within
your PSS code

To install and use the tool, download and install it directly from the
Visual Studio Code (VS Code) Marketplace and Follows the
instruction given in README.md

s://magke] e.vi 1 com/items?itemName=AgnisysInc.agnisysPSS

-‘ Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

SYSTEM DEVELOPMENT WITH CERTAINTY

INSTALLED “

Agnisys PSS D 15tms
A VSCode extension 0 ease the...
@

Agnisys Inc

]
&

o
Q

'C+ « Extension Pack

]

’ C/C++ Themes

oe) Ul Themes for C/C+= exte
Microsoft
! CMake

g
o
<

AAAAAA

. C/Cos
+ C++ Intellisense. debugging
Mictosoft 0 &

(]

sample

Agnisys

Renilirements

. Agnisys PSS w40

[N

26

https://marketplace.visualstudio.com/items?itemName=AgnisysInc.agnisysPSS

PSS Edi

.‘ AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

itor

e

File Edit Selection View Go Run - &« - 1 example
EXPLORER car_po.pss @ arpmc_impl_regs.pss X
v EXAMPLE GRLS arpme_impl_re
> all_outputs 1 /* Package contalning PMC HW registers as PSS register components*/
ardlk_rst_regs.pss S
T rEgE s 3 package pmc_registers | regs _pkg {
- 4 import addr_reg _pkg::¥;
arpmc_impl_regs.pss & e
car_pg.pss 6 struct PART_NVENC_POWER_GATE_CONTROL_reg_s : packed_s<> {
car.pss 7 bit[1] LOGIC_SLEEP;
ip_integration_top.pss 6 8 bit[1] SRAM_RET_EN;
C.pg.pss 1 9 bit[1] SRAM_SLEEP_EN;
meass 10 bit[5] rsvd_0;
e 11 bit[1] START;
PMC.PgPss 12 bit[22] rsvd_1;
prees 13 bit[1] INTER_PART_DELAY_EN;
pss_core_library.pss 14 };
15 struct PART_NVENC_POWER_GATE_STATUS reg s : packed_s<>
16 bit[1] LOGIC_SLEEP_STS;
17 bit[1] SRAM_RET_STS;
18 bit[1] SRAM_SLEEP_STS;
19 bit[29] rsvd_e;
20 o
& e
21
22 struct PART_NVENC_PWRDWN_REQ_CONTROL_reg_s : packed_s<> {
2 bit[1] REQ;
24 bit{31)] rsvd_e;
‘ H

> OUTLINE
> TIMELINE

2 struct PART_NVENC_PWROWN_ACK_STATUS_reg_s : packed_s<>
28 bit[1] CBB_ACK;
2 bit[1] DBB_ACK;

bit[1] HIX_ACK;

bit[29] rsvd_e;

wow
® <

LS

Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

27

Conclusion

The SoC specification defining the registers and memory can be written in SystemRDL format as well as in PSS 2.0
format released by Accellera recently.

Both SystemRDL and PSS powerful compilers have been written to generate various outputs such RTL, UVM, Headers
and documentation. There should be a way to generate custom tests for boards as well as UVM and UVM-C based
environments through a common specification. This provides a solution for firmware engineers to write and debug their
device drivers and application software. Therefore, PSS helps in the solution for SOC/IP teams who aim to cut down the
verification and validation time, through automatic generation of UVM and sequences which enables exhaustive testing of
memories and register maps.

This approach also unifies the creation of portable sequences from a golden specification. Sequences can be captured in
PSS, python, spreadsheet format, or GUI(NG) and Register models has been capture in system RDL and generate
multiple output formats for a variety of domains:

* UVM sequences for verification

» SystemVerilog sequences for validation

* C code for firmware and device driver development

* Specialized formats for automated test equipment (ATE)
» Hooks to the latest Portable Stimulus Standard (PSS)

» Programmer Reference Mannual (PRM)

.-‘ AGNISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL. 28

SYSTEM DEVELOPMENT WITH CERTAINTY

Thank You
Agnisys, Inc.

.-‘ AG N ISYS Agnisys Copyright 2024. All Rights Reserved. COMPANY CONFIDENTIAL.

SYSTEM DEVELOPMENT WITH CERTAINTY

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: PRM (PROGRAMMER’S REFERENCE MANUAL)
	Slide 18: Sequence Tabular view
	Slide 19: Flowchart view
	Slide 20: Device Driver
	Slide 21
	Slide 22
	Slide 23
	Slide 24: AgnisysⓇ PSS Compiler
	Slide 25
	Slide 26: PSS Editor
	Slide 27: PSS Editor
	Slide 28
	Slide 29

