
© Accellera Systems Initiative

VLSI design has many stages of development right from requirement to final

implementation in ASIC or FPGA. All these stages entail many EDA software where

these software produce results in the form of reports. These reports have meaningful

information to be extracted. Generally, these reports are structured, and engineers

extract information through scripts. The most common way of extracting useful

information is through the usage of regular expressions to find the desired patterns in

the report/data files. Regular expressions help to a certain degree in extracting the

patterns, but a robust parsing scheme is always required to extract the data.

Parsing algorithms are very specific to computer science especially in the field of

compiler design. We can leverage parsing algorithms to parse the EDA tool reports.

Also, sometimes the EDA tool require input data in some specific format like CSV.

Consider an example where a verification team keeps its register initialization

information in a proprietary format. To convert this data into CSV we may require

parsing the proprietary format data. Engineers often face these challenges of data

migration and hence a need for effectively parsing the data is inevitable.

Parsers can be coded in some language or generated through automation by some

language agnostic tool like [1]. We will use [1] to automatically generate a parser

saving lot of time. We will show an example of a Reset Tree expression generated by

Questa RDC tool and will see that one can leverage this information to do meaningful

tasks like AI/ML to extract more information.

INTRODUCTION

A language-agnostic parser generator

PARSING PRIMER

An Example Data from Tool Report

There are many online parser generators. We have chosen ‘Syntax’ [1] as our main

parser generator tool. Syntax is language agnostic when it comes to parser

generation. The same grammar can be used for parser generation in different

languages. Currently Syntax supports JavaScript, Python, PHP, Ruby, C#, Rust,

and Java. The target language is determined by the output file extension. [1]

Syntax supports Yacc/Bison and JSON notations to define the grammars. Syntax also

supports several LR parsing modes: LR(0), SLR(1), LALR(1), CLR(1) as well LL(1) mode.

More details on this can be found at [2].

LR (Left Recursive) parsing, and its most practical version, the LALR(1), is widely used

in automatically generated parsers. For out representation we will be using LALR(1).

Following command was used to generate the AST. “test.bnf” is our grammar file and

“test.lt” is our actual data to be parsed.

[mbhati]$ syntax-cli --grammar grammar/test.bnf --mode LALR1 --file __tests__/test.lt

To generate the parser in Python language following command was used

[mbhati]$ syntax-cli --grammar grammar/test.bnf --mode LALR1 –o my_parser.py

The generated python file can be now used as a plugin in our main python file.

Manish Bhati Siemens EDA, manish.bhati@siemens.com

Automating information retrieval from EDA

software reports using effective parsing algorithms

Grammar and Abstract Syntax Tree (JSON Data) Conclusion

We have tried to show how a complex structured data can be easily parsed using a

properly designed grammar. We used ‘Syntax’ a language-agnostic parser generator

which can generate parser code in the language of choice. With the grammar created

we can create abstract syntax tree. Our AST simply contains the reset signal data in

JSON format. JSON is a popular data format and can be easily parsed using language

APIs.

In this experiment we were data mining deep reset inferences which were hard to

identify in schematic and hard to manually refer the reports. The JSON representation

of the data can help in doing machine learning and finding the root cause of too many

reset inferences.

Parsers can also be hand coded but using an automated parser generator is a faster

method to create a parser.

Tokenizer and Grammar for Parsing Reset Signal

and Non-Reset signals data

REFERENCES

We will introduce some basic concepts which are required to create a grammar for a

structured data. Parsing process is two stage process as shown below.

Abstract Syntax Tree Created

(Shown for some signals only)

Consider the following data section from an RDC run report which depicts a lot about

an inferred reset. There is a new inferred reset domain

top.blk_1.blk_3.blk_4.blk_5.sig_17[3].set created, and the report also lists the

expression responsible for this. The information contains three sections., viz Reset

Signals, Non-Reset Signals and Expression. One can parse this information to create a

data for further processing of this information. This information can also be used to

do an automated root cause analysis on extra inferred reset domains. This is one such

use case, but possibilities are endless.

TOKENIZER PARSER

Tokenizer also called as lexer

groups characters to produce a

stream of representations also

called as tokens.

Parser will do Syntactic Analysis

of the grammar and produce a

syntax tree.

Abstract Syntax Tree

x = 3 * 5 + y

T:- Terminals e.g. {a,b}

S:- Starting Symbol from first production e.g. S

P:- Productions also called as rules e.g. S->aX

N:- non terminals or variables {S, X}

Grammar is a set of restrictions on the alphabet (set of characters) for a specific

language (set of strings). Formally grammar is a tuple of four elements.

G = (N,T,P,S) where

S -> a X

X -> b

Grammar

“ab”

S -> a X -> ab

Parsing of “ab”

[1] GIT Repository for Syntax, https://github.com/DmitrySoshnikov/syntax

[2] Syntax: language agnostic parser generator, https://dmitrysoshnikov.medium.com/syntax-language-agnostic-parser-generator-bd24468d7cfc#.1xmztsx3k

https://github.com/DmitrySoshnikov/syntax
https://dmitrysoshnikov.medium.com/syntax-language-agnostic-parser-generator-bd24468d7cfc#.1xmztsx3k

