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MACHINE LEARNING IN DESIGN 
VERIFICATION AND VALIDATION

“When All You Have Is a Hammer, Everything Looks Like a Nail” 

• Verification of designs or 
changes in them requires a lot 
of manual work

• There is need to automate this 
as much as possible

• ML can be used to great extent 
for automation in this regard
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SystemVerilog Assertions (SVA) in 
Verification and Validation 
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• Primarily used to validate the behavior of a design against its 
original specification.

• Used to provide information on functional coverage for a design.
• May also be used as a formal specification language, making the 

requirements clear and unambiguous to automate validation of 
the design against its given specification. 



SystemVerilog Assertion complexities

• Writing accurate yet compact SVAs is a difficult task to achieve.

• Often the actual written SVAs may not be equivalent to the intended 
assertion/check, leading to missed design bugs as well lower 
functional coverage.
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Objective

• Solving the problem of writing sophisticated SystemVerilog Assertions 
through machine learning. 

• To bridge the gap for verification engineers who do not have prior 
knowledge of writing SVA to functionally validate a design. 

• To create a pipeline or connectivity to understand the user's natural 
language description of assertions and generate SVA, and vice-versa. 

• Help users to conceptualize their intended assertions into actual SVA.



Deep learning space

❑ Transformer neural network

• State-of-art network in NLP 

• Can out-perform all NLP datasets such as earlier models like SQUAD, BABL etc.

• Architecture with self attention-based encoder-decoder

• Used in computer vision applications

• Much more promising results as compared to previous neural nets

• Used to perform both Machine Translation and Named Entity Recognition



Transformer neural architecture



❑ Tokenizer

• A method to convert sentences into multiple tokens or sub-words
• Lesser data may make it difficult to build a new tokenizer
• Pre-trained Bert Tokenizer used to deal with Out-Of-Vocabulary 

words
• Pre-trained word embeddings also used which is associated with 

the tokenizer
• Excludes multiple spaces and considers punctuation as separate 

token



Data Mining

• This task involved collecting domain specific cases
• As very limited availability of information related to System Verilog 

Assertions, Multiple sources considered for initial samples including 
industry standard samples to focus more on actual SVA practices

• Additional data was generated using rules and syntaxes of writing 
System Verilog Assertions

• Samples were generated using phrase-based dictionaries
• Data generator involve complex mapping of rules to adhere to the 

rules of target language through python scripts
• Steps were done to build an initial model, and it was generalized 

further using augmentation techniques along with fine-tuning using 
new available data



Data generalization

• More data was required apart from the collected samples

• Augmentation techniques like back-translation was used to generate 
more samples

o This data needed to be monitored, in order to avoid distorted sentences

• Training of the model was also done using fine-tuning to remove data 
uncertainty.



Data inconsistency

• Large inconsistencies were observed during dataset building

• Large number of overlapped meanings occurred

• Model sometimes diverged if trained with that inconsistent data

• Debugging of such dataset cases were laborious and time consuming

• Also, parallel meaning didn’t exist between data samples unlike other cases 

such as  German-English or vice-versa, etc.



Model Training

• Model was well trained :
oWith a batch size of 64 and a maximum sentence length of 512 
o For 50 epochs, where each consisted of 300 batches

• Model was observed to have the ability to learn quickly even the 
complex scenarios

• Training was data centric initially due to absence of generalized 
dataset and was expected to overfit

• Augmentation was done :
o To increase model’s generalizability
oDecrease model’s overfitting to small dataset



Training with Augmentation

• Along with improved performance on augmented samples, 
the data samples needed to be monitored to avoid model 
divergence

• Augmentation performed for both character and word level

• Mechanism used :

• Back-Translation
• Random word/character swap
• Random word/character deletions
• Random word/character insertions
• Synonym's replacement (i.e., words with same meaning were 

exchanged)

English French English

signala is high and go low 
in the next cycle

signala est élevé et diminue 
au cycle suivant

signala is high and

decreases in the next cycle

signala changes to 1 le signala passe à 1 the signala goes to 1



Hyperparameter selection

• Hyperparameter were used after trying out few combinations. Such as :
o Number of layers = 4
o Attention head = 8
o Embedding size = 128

• The above-mentioned parameters found out to be best for the considered 
scenario

• We saw,
• Increasing number of layers lead to increase of model training time as well as model 

convergence time
• Increasing embedding size lead to fluctuation of the accuracy, and also model jumps 

from one point to another



Some data samples with predictions
Input Predict

signala is stable, signaln is low after signalg is unknown, after 2 cycles, signalb is low $stable ( signala ) ## 0 $isunknown ( signalg ) |=> ! signaln ## 2 ! signalb

ack is stable , req is low after pready is unknown, after 2 cycles, arready is low $stable ( ack ) ## 0 $isunknown ( pready ) |=> ! req ## 2 ! arready

After a 5 valid signala, signala goes high until signall arrives $rose ( signala ) |-> ## 5 $rose ( signala ) throughout ( $rose ( signall ) [ - > 1 ] )

When signala deassert and after 2 clock ticks throughout which signale is low and it is 
for 10 cycles

$fell ( signala ) ## 2 throughout ( ! signale [ * 10 ] )

Whenever signala goes high, signalb must go high within 2 clocks and go low in the 
next clock

$rose ( signala ) |-> ## [ 1 : 2 ] signalb ## 1 ! signalb

The signala is not equal to signald for 10 or more non consecutive clock cycle ( signala != signald ) [ - > 10 : $ ]

signala rose to 1 $rose(signala)

signala is high and go low in the next cycle signala ## 1 ! signala

The sequence in which signala is high and signald is low and the sequence in which 
signalc is stable and in the next cycle, signale is low.

(signala && !signald) and ($stable(signalc) ##1 !signale )

The sequence in which signala is high and signald is low and the sequence in which 
signalc is stable and in the next cycle, signale is low. They must end at same clock cycle

( signala && !signald ) intersect ($stable(signalc) ##1 !signale )

When signala is high and in the same cycle signalc is less than the value of signald 
before 2 clock ticks and must occur within the sequence signala is high.

( signala |-> signalc < $past ( signald, 2 ) ) within (signala )



Results

• Resulted in a state of art for machine translation
• Achieved a greater accuracy
• Model was able to learn and translate complex 

descriptions of assertions
• Achieved an accuracy of around 99 percent on the training 

dataset
• Achieved an accuracy of around 83-85% on an internal test 

dataset



Applications

• Helping verification and validation engineers to easily capture 
accurate SVAs through their specification level descriptions

• Automatically hooking assertions from descriptions to the design for 
improved functional coverage

• Following application has been already deployed on https://ispec.ai



Future Scope

• Covering more complex scenarios

• Increased model reliability

• Improved generation of sophisticated SVAs efficiently

• Covering and understanding user’s natural language intent 
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