
Automatic Translation of Natural Language to
SystemVerilog Assertions

Abhishek Chauhan

Agnisys Technology Pvt. Ltd., abhishek.ch@agnisys.com

Abstract

In a design development cycle, a large amount of time and resources are
consumed in the very tedious cycle of verification/validation of the design against
the design specification, leaving behind a shorter time-to-market. There is a huge
demand and growth for automation in this aspect of the development cycle. Often
verification engineers are required to formally validate a design against its actual
specification through assertions that are fed to a formal tool. These assertions
are tricky to write, especially if the engineers have less experience with writing
assertions. Machine Learning (ML) algorithms can be used to eliminate this void
and automate the manual work of capturing accurate assertions against a design
specification and thus save time as well as other resources.

We propose a novel supervised approach for a machine translation of natural
language to SystemVerilog Assertions (SVA), which is trained using
self-generated datasets. Various Natural Language Processing (NLP)
augmentation techniques are used in this approach to increase the dataset such
as back translation, random noise addition, synonyms replacement, etc. which
helps in model generalization. The objective is to train the model with smaller
subsets and then increase the model generalization with further augmentation
techniques.

Introduction

SystemVerilog Assertions (SVA) are primarily used to validate the behavior of a
design against its original specification. SVA are sometimes used to provide
information on functional coverage for a design and may also be used as a
formal specification language, making the requirements clearer and more
unambiguous, and also making it possible to automate validation of the design.

Writing SystemVerilog Assertions that are compact yet accurate is a difficult task,
and often the actual written SVA may not be equivalent to the intended
assertion/check, leading to missed design bugs or lower functional coverage.

This paper aims at solving this problem of writing such sophisticated
SystemVerilog Assertions with the help of machine learning (ML) by bridging the
gap for the verification engineers who do not have prior knowledge of writing SVA
to functionally validate a design. The idea is to create a system to understand the
user's natural language description of assertions and generate SVA, and
vice-versa. This will help users to conceptualize their intended assertions as
actual SVA and to understand the SVA in the code.

Machine Learning space used

Related work

With a one-step attention Recurrent Neural Network (RNN) based network, the
model performed poorly due to issues like name generation, Out-Of-Vocabulary
(presence of ample names) and considerably long sentences. The CRF
(Conditional Random Field) based RNN model, which was also tried for
segmentation of sentences and Named Entity Recognition, performed quite well.
The idea of considering it was dropped later as it does not support the latest
Tensorflow library and will need extra dependency on a third-party library.

We later tried implementing the copy mechanism in a one step attention network
and the model was found not to be able to comprehend all names in the input
sequence and suffered drastically due to word repetition.

We also explored VAEs (Variational AutoEncoders) to learn text representation in
space and thus by using representation we tried to generate a syntactic dataset.
This generated a poor dataset and so was not considered further. As to train
VAEs, there is a requirement of larger dataset for representation learning.

Actual ML application

Transformer neural network

Transformer neural networks are the state-of-art networks in Natural Language
processing. They have the capability to out-perform all NLP datasets as
compared to earlier models such as SQUAD dataset, BABL, Language
translation parallel corpus, Stanford Sentiment Treebank, etc. They are also used
in Computer Vision as they perform way better than the earlier networks. This
type of network shows a promising future in neural nets task achievement.
Development has been going on to optimize model training and inferences on
hardware as the size of such networks is constantly growing. The network
involves usage of simple MLP with fully connected layers and attention operation,
which makes it very simple.

In the machine translation task, to translate English natural language into
SystemVerilog Assertions, there was an issue with name generation where we
used the ‘Named Entity Recognition (NER)’ model to deal with the problem. The
NER basically extracts entities based on learned context representation, which
involves usage of only the encoder and the final layer as a fully connected layer
to predict each token in the input sequence. On the other hand, the encoder with
added decoder was used for inter-language translation. The network was trained
using supervised techniques.

A parser-based machine translation technique is used, which basically segments
the natural language based on SystemVerilog delay clock cycles, and then uses
those segments to form separate embedding to impute this useful information in
the machine translation scenario.

Figure 1: Transformer neural architecture (Ref. [9])

Tokenizer

To deal with Out-Of-Vocabulary words and with less availability of the dataset, we
used a pre-trained vocabulary English (bert-uncased) Bert-Tokenizer and also
fetched the pre-trained embeddings for the same. This tokenizer works in a
manner that breaks words into multiple sub-words to handle text including the
unknown texts. It does not consider multiple spaces, and also separates
punctuations with a space.

Data collection

For natural language, datasets are available but those are only suitable for
learning the representation for English language in an unsupervised fashion and
no dataset is available for SVA as of now. This task involved domain specific
cases. We explored and researched the domain specific sites for SystemVerilog
Assertions but found very little information in terms of public usage. Thus, as a
result a huge amount of time was invested in data mining.

We considered generating datasets by referring to the rules of SystemVerilog
assertions syntaxes (SystemVerilog 3.1a Language Reference Manual Ref.[1]).

We then created the collection for phrases dictionary for SVA syntaxes, such as
predefined properties, clock cycle delays, Boolean operators, comparison
expressions, repetition operators, implication, etc. Python scripts created on the
top of SystemVerilog Assertions defined rules for writing those script rule-based
assertions. They were also used to verify the combination of the syntaxes,
operators, and their corresponding English phrases to generate target
sequences. These data generators involved complex mapping of rules to adhere
to the rules of the target language to produce the correct form of English.
Recursive placeholder replacement was also used for nested SVA expressions.
We added annotation checks, and error assertions to ensure correct sample
generation. Creating the phrase collections was laborious and time consuming.
We collected the initial data samples from multiple sources including industry
standards to focus more on the practiced/used SVA.

Further data generation

The collection of samples needed more additions. We used the NLP
augmentation technique which is Back Translation. The technique involves the
use of a trained machine translation model that helps convert input sentences
(English in our case) to many other selected languages like German, French,
Spanish, etc. and then retranslate from the respective output language to the
initial language (English). Basically, the techniques helped to generate new
phrases with almost the same meaning as an input sequence. We observed that
by using back translation with a particular language, new samples were obtained
with proper restructuring of input sentences to a completely different sentence yet
with the same meaning. But this process needed to be continuously monitored
and analyzed as the sentences could sometimes distort and generate completely
irrelevant sentences.

Data inconsistency

Data inconsistency was observed in large numbers when the dataset was
created manually. Large number of samples had overlapped meanings, like the
same phrase mapped to multiple outputs. Any model will find it difficult to

converge with such an inconsistency. The debugging of such a case is a
laborious task and consumes a lot of time.

Data inconsistency was also found in general cases such as in case of machine
translation from English to German and vice versa, which can be defined as
parallel corpus as one word corresponds to combination of words in other
languages and in some cases even word to word mapping exists. But in this
case, the dataset was not a parallel dataset as the sentences define a property
or its relationships and the context for any signal name used.

Training

A batch size of 64 was used and a sentence length of 512 was generated as
input for the machine translation model. This was trained for 50 epochs where
each epoch consisted of 300 batches. The model trained quite well with very
good accuracy. We observed that the model could learn easily even when
complex sentences were mapped. Currently, the model is trained with a data
centric approach due to the absence of a generalized dataset. The model is
expected to overfit on such a dataset as we have observed and trained it with
augmented samples.

Training with data augmentation

To avoid overfitting and increase model generalization to perform better on new
samples, a lot of techniques were researched and implemented. Some of them
were provided by the Nlpaug Python library (an NLP augmentation library) and
below are some which were manually implemented to cover our scenario:

· word swapping - a random pair word was swapped in a sentence

· word insertion - a random word or combination of word were inserted in
between a pair of words

· word substitution - a word was replaced with some other words (both good
and bad words)

· synonyms substitution - in order to increase the sample space, words were
replaced with their synonyms, and a Fill-Mask pretrained model was used to
produce such words

· antonyms substitution - to contradict the meaning of a sample, words with
opposite meanings were replaced with one or more words (such samples
were created with much less probability, only to increase model dependency
on other words)

· back translation - it was done using a Google translation API that proved to be
very helpful in generating new samples [Table 1]

Sentences were augmented at character level, so that the model can handle the
user's spelling mistakes as well. And so random character
insertion/substitution/deletion, typing errors, etc. were also used and these
utilities were provided by the Nlpaug library.

The model performed exceptionally well with these techniques, but it was
observed that we could only augment a few samples in a single batch, rather
than all for the model to be able to learn with accuracy.

English French English

signala is high and go low in
the next cycle

signala est élevé et diminue
au cycle suivant

signala is high and
decreases in the next cycle

signala changes to 1 le signala passe à 1 the signala goes to 1

Table 1:Back translation sample

Experimental results

Hyperparameter selection

Hyperparameter can be considered as the number of layers, attention head, and
embedding size that decides the fate of models. These parameters also affect
the model training time, convergence time, and inference time. We considered 4
layers with 8 attention and 128 embedding sizes for the task after trying out a few
other combinations. This scenario proved to be the best among our
considerations.

S.no. Hyperparameters Augmentation Remarks

1 {num_of_layers:4,
attention_heads:8,
embedding_size:128}

No The model trains very fast and is able to
converge within 25 epochs to 99.0 and
achieved accuracy of 99.9 on further
training. The model overfits.

2 {num_of_layers:4,
attention_heads:8,
embedding_size:128}

yes The model is able to converge to 99.2
but keep fluctuation between the 98 to
99.2. This is because of adding noise
using augmentation. This model
generalizes well with new samples.

3 {num_of_layers:4,
attention_heads:8,
embedding_size:512}

No The model becomes slow. And it is not
able to cross 97.8. Vanishing gradient
might be the problem. It took a long time
to achieve this accuracy.

4 {num_of_layers:6,
attention_heads:8,
embedding_size:128}

No Due to an increase in layers, model
accuracy starts jumping with a large gap.
It increases for a time then decreases
then starts fluctuation. Data
inconsistency can cause such problems.
The model trains slowly.

5 {num_of_layers:6,
attention_heads:8,
embedding_size:512}

No The model trains very slowly. Model
accuracy increases gradually then
decreases and starts jumping between
60 to 70. Vanishing gradients might be
the issue. Also, data inconsistency can
cause such problems.

Table 2:Hyperparameter selection

Factors such as data sample imbalance, overlapped meanings, and considerably long
dependencies can also affect the accuracy of neural nets. Batch size on the other hand
did not affect the accuracy as much and thus we considered only ‘64’ as the batch size.
Due to the smaller labelled datasets and dependency on augmentation technique for
model training, large models were performing as per expectation.

Input Predict

signala is stable, signaln is low after signalg is unknown, after 2
cycles, signalb is low

$ stable (signala) $
isunknown (signalg) !
signaln # # 2 ! signalb

ack is stable , req is low after pready is unknown, after 2 cycles,
arready is low

$ stable (ack) $
isunknown (pready) ! req
2 ! arready

After a 5 valid signala, signala goes high until signall arrives $ rose (signala) | - > # # 5
(signala throughout (
signall [- > 1]))

When signala deassert and after 2 clock ticks throughout which
signale is low and it is for 10 cycles

! signala # # 2 throughout (!
signale [* 10])

Whenever signala goes high, signalb must go high within 2
clocks and go low in the next clock

$rose (signala) |-> ## [1 :
2] signalb ##1 ! signalb

The signala is not equal to signald for 10 or more non
consecutive clock cycle

(signala! = signald) [- >
10 : $]

signala rose to 1 $ rose (signala)

signala is high and go low in the next cycle signala # # 1 ! signala

The sequence in which signala is high and signald is low and
the sequence in which signalc is stable and in the next cycle,
signale is low.

(signala & &! signald) and
($ stable (signalc) # # 1!
signale)

The sequence in which signala is high and signald is low and
the sequence in which signalc is stable and in the next cycle,
signale is low. They must end at same clock cycle

(signala & &! signald)
intersect ($ stable (signalc
) # # 1! signale)

When signala is high and in the same cycle signalc is less than
the value of signald before 2 clock ticks and must occur within
the sequence signala is high.

(signala | - > signalc < $
past (signald, 2)) within (
signala)

Table 3:Data samples with predictions

Results

The transformer neural network has come up as the state-of-art for machine
translation with great accuracy with complex descriptions of assertions in natural
language.

Both the translations, natural language description to SVA as well as SVA to
standard English description, show accuracy of around 99% with the training
dataset and around 83-85% on an internal test dataset.

Application

Verification/validation engineers can now easily capture SVA though their English
assertion descriptions, and vice-versa, and can hook these automatically
generated assertions to their environment for functional validation of the design.

A current trial version has been deployed at ‘www.ispec.ai’ for users to try and
play with the model. Users can also provide feedback if the generated SVA
deviates from their intended assertion description to further improve the efficiency
of the model and make it more robust.

Future work

· Aiming to collect more data from industry sources to make the model more
reliable and further improve its accuracy

· Beam search for text generation

· Train a larger transformer network with various objective tasks for complex
natural language representation

http://www.ispec.ai

References

[1] SystemVerilog 3.1a Language Reference Manual - extensions to the IEEE
1364-2001 - IEEE Standard Verilog Hardware Description Language

https://ieeexplore.ieee.org/document/954909?arnumber=954909

[2] Attention Is All You Need
https://arxiv.org/abs/1706.03762

[3] Transformer: A Novel Neural Network Architecture for Language
Understanding
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

[4] Nlpaug python library

https://github.com/makcedward/nlpaug

[5] Incorporating Copying Mechanism in Sequence-to-Sequence Learning

https://arxiv.org/abs/1603.06393

[6] A Survey of Data Augmentation Approaches for NLP

https://arxiv.org/abs/2105.03075

[7] Automating the Translation of Assertions Using Natural Language Processing
Techniques

[8] Generating Formal Verification Properties from Natural Language Hardware
Specifications

[9] https://d2l.ai/chapter_attention-mechanisms/transformer.html

http://courses.eees.dei.unibo.it/LABMPHSENG/wp-content/uploads/2016/02/SystemVerilog_3.1a.pdf
https://arxiv.org/abs/1706.03762
http://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
http://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://arxiv.org/abs/1603.06393
https://arxiv.org/abs/2105.03075

