CONFERENCE AND EXHIBITION

MUNICH, GERMANY DECEMBER 6 - 7, 2022

An end-to-end approach to Design and Verify BMS: from Requirements to Virtual Field Testing Conrado Ramirez Irina Costachescu Marius Andrei Carlos Villegas MathWorks NXP NXP Speedgoat

A MathWorks®

Agenda

- System-level Modeling and Verification
- From Model to Embedded Hardware: SiL and PiL Verification
- Real-time verification with HiL Testing

System-level Modeling and Verification

Motivation

Collaboration Gap

Long Iteration Cycles

Safety Critical System

Multi-Domain System Modeling

Simulations & Code Generation

Model V&V and HIL Testing

DESIGN AND V

MUNICH, GERMANY DECEMBER 6 - 7, 2022

Evaluate Battery Management System Behavior

- Simulate interaction between software modules
- Design & test algorithms for different operating conditions
- Calibrate software before putting into battery pack or vehicle

Battery Management System Architecture

RDTX+ RDTX-

Battery Pack

Cell Monitoring

Software

if (((<u>uint32 T</u>)<u>State Machine DW</u>.temporalCounter i3) < 15U) {</pre> State Machine DW.temporalCounter i3 = (uint8 T) ((int32 T) (((ir State Machine DW.temporalCounter i3) + 1));

if (((<u>uint32 T)State Machine DW</u>.is active c2 State Machine) == (State Machine DW.is active c2 State Machine = 1U; State Machine DW.is MainStateMachine = State Machine IN Standk *rty BMS State = 0;State Machine DW.MonitorCurrLimMode = MonitorCurrLimModeType N

State Machine DW.MonitorCellVoltageMode = MonitorCellVoltageModeType NoCellVoltFault; State Machine DW.Delta = (real32 T) fabs((real T) ((real32 T)) ((*rtu Pack Voltage) - <u>sum gyOCKAG3</u>(rtu Cell Voltages))));

Supervisory tasks SOC estimation **Contactor management Isolation monitoring** Fault detection and recovery **Thermal management Current & power limits**

Typical Battery Management System Architecture

A BMS for a battery pack is typically composed of:

1) Battery Management Unit (BMU) Centralized control of battery pack. Includes state estimation (SoC, SoH, SoX). Typically uses CAN as well as proprietary protocols to interface to CMU

 Cell Management Units (CMU) Takes care of cell balancing (active or passive) and measurement of individual cell voltages (1s) and temperatures. Typically interfaced using proprietary communication protocols.

3) Battery Junction Box (BJB) Switching unit connecting to the load that typically includes current sensors. May interface via CAN bus.

Model-Based Design Verification Workflow

Model Verification

Discover design errors at design time

Code Verification

Gain confidence in the generated code

Requirements Import and Export

Manage Requirement Traceability

Maguirements	Editor														– 🗆 X
REQUIREMENTS															6 4 1 2 - 2
New Requirement Set	Open 🛃	Save Import Close Add Requirement	Delete Promote Require ED Demote Require REQUIREMENTS	ement Add Link -	Clear Issue Clear Issue Preferences	Show Requirements	Show Links II In VIEW	efresh olumns 🔻 formation 👻	Q Search EDIT	Traceability Matrix	Traceabil Diagran ANALY	ity Model Tes n Dashboa SIS	ting Exp rd SH/	≥oort ▼ ARE	-
Index	x ID Summary			Implemented			Verified Details			Details Description	ent: #202				
 BMS_Require Import1 StateMachine_ StateMachine_ State 3 4 5 6 7 8 9 	 BMS_Req BMS_Req BMS_Req #30 #30 #30 #30 #30 #30 #30 #30 #48 #48 #36 #202 #201 	References to BMS_Required Main State Machine Low Lew Implement Standby State Implement Driving State Implement Fault State Implement Charging State Fault While in Standby State Fault While in Charging State Fault While in Driving State	ments.docx rel Requirements									Keywords:	riging Sta 100ms Af	✓ 10 ✓ B I U ■ Ite, if any fault is present, Main State Mach ND set Charge Current Request to 0 Ampe	F = = F F F F F F F F F F F F F F F F F
10 11 12 13	#203 #204 #205 #206	Transitioning from Standby Transitioning from Driving S Transitioning from Standby Transitioning from Charging	State to Driving State tate to Standby State State to Charging State State to Standby State	Imple	ementat Implem Justifie	ion Sta nented ed	itus	Ve	erific F	ation Passe ailed	Stat	us	mented k (<u>tPresent</u>] ed by: ging <u>ToFa</u>	oy: ult ⊘	
		Missing			Missing				ב			17			

SYSTEMS INITIATIVE

Systematic Functional Testing

Create Test Harnesses

Test Management

Test Manager

- Author, manage, organize tests
- Execute simulation, equivalence and baseline tests
- Review, export, report

Test Harnesses

- Isolate Component Under Test
- Synchronized, simulation test environment

Test Authoring

- Specify test inputs, expected outputs, and tolerances
- Construct complex test sequences and assessments

From Model to Embedded Hardware: SiL and PiL Verification

Hardware Aware Models

Embedded Applications Development Environment

DRIVERS, MIDDLEWARE, LIBRARIES

 Simplify hardware access by using hardware optimized software

CONFIGURATION, BUILD, DEBUG TOOLS

- Application development inside an IDE
- Build Tools, Debug Tools and Configuration Tools integrated within the IDE
- Drivers, Middleware and Libraries configuration and initialization in a graphical environment

REAL TIME MONITOR, DEMO TOOLS

- Check the status of the running on target application in real time
- Write and read variables, registers, memory locations
- Monitor signals on the embedded target
- Fast demo design

From Model to Embedded Hardware

IBD

ST

MODEL-BASED DESIGN TOOLBOX

- Collection of Drivers, Libraries and Tools
- Embedded systems design and deployment on NXP MCUs directly from Simulink

- Verification and Validation

From Idea to Application

MODEL-BASED DESIGN TOOLBOX

- Collection of Drivers, Libraries and Tools
- Embedded systems design and deployment on NXP MCUs directly from Simulink

MATHWORKS ECOSYSTEM MATLAB/SIMULINK

- Model-Based Design
- Simulation
- Automatic Code Generation
- Verification and Validation

Model-Based Design Toolbox

Embedded Applications Development Flow

nyAppModel - Simulink - 🗆 🗙										
SIMULATION DEBUG MODELING FORMAT APPS	- • • • • -									
Image: Save with the second	REVIEW RESULTS									
 MCU Configurations: Core. Systems and Perioherals MCU Inputs MCU Inputs 	Module: 0 Module: 0 Module: 0 TX CAN Tx Channel] IFO : off FD : off IFD : off IFD : off S S N Module : 0 New RX CAN Rx channel] IFO : off S S S S S S S S S S S S S									
Balancing_Logic Balancing_Logi	REEN_LED									
Nodel Data Editor Radui	EiserStanDiorrate									
Ready 100%	FixedStepDiscrete									

Embedded Applications Development Flow

Virtual Field Testing

<section-header>

Software-in-the-Loop

Processor-in-the-Loop

SYSTEMS INITIATIVE

Virtual Field Testing

Model-in-the-Loop

Software-in-the-Loop

<section-header>

External Mode

Virtual Field Testing

Model-in-the-Loop

SYSTEMS INITIATIVE

Software-in-the-Loop

<section-header><section-header>

Hardware-in-the-Loop

Mil - Sil - Pil - Hil

Software-in-the-Loop

Processor-in-the-Loop Embedded code with test signals

Hardware-in-the-Loop

Test Vectors Model Desktop Simulation (on PC) Results

Mil - Sil - Pil - Hil

Mil - Sil - Pil - Hil

MiL and PiL Equivalence Test

Real-Time Verification with HiL Testing

Real-Time Systems for BMS Testing

Typical Battery Management System Architecture

A BMS for a battery pack is typically composed of:

1) Battery Management Unit (BMU) Centralized control of battery pack. Includes state estimation (SoC, SoH, SoX). Typically uses CAN as well as proprietary protocols to interface to CMU

 Cell Management Units (CMU) Takes care of cell balancing (active or passive) and measurement of individual cell voltages (1s) and temperatures. Typically interfaced using proprietary communication protocols.

3) Battery Junction Box (BJB) Switching unit connecting to the load that typically includes current sensors. May interface via CAN bus.

BMS Currents

• Full load currents: linked to load or charger. Typically in the range of hundrends of Amperes for EVs

• **Balancing currents:** Currents flowing through cell balancing circuit. Such circuit could be passive (discharge cells) or active (redistribute charge). Typically between 100mA and 5A.

HIL Testing of BMU

• **Device under Test (DUT):** technique to test embedded control systems where part of the plant is simulated.

HIL Testing of BMU

• Hardware-in-the-Loop Testing: technique to test embedded control systems where part of the plant is simulated.

HIL Testing of BMU and CMU

• **Cell emulation:** mimic the battery cell electrical power (voltage and current) using a real-time simulation (HIL simulator and power amplification). It is a type of Power HIL.

HIL Testing for BMU and CMU

- Test control and electrical interfaces
- Each cell emulated: up to 6V and 5A
- Emulate the electrical behaviour of battery cells
- Stack up to 312 of virtual battery cells (1600 V)
- Include communication interfaces like isolated SPI or CAN

HIL Testing of full BMS and load

Device under Test can also include the real load (e.g. powertrain or EV charger). The interfaces include electrical power

Real-Time Simulator

Built for High-Performance

- Multicore CPU
- Simulink-programmable FPGAs

Rear-view

Battery Emulation I/O

- Serial and bus communication (SPI, CAN, UART)
- Cell temperature emulation
- Shunt emulation
- Cell controller emulation
- Fault insertion

Battery Cell Emulator

Small to Large BMS test systems

Voltage isolation of 1.6 kV

Stack up to 312 cells

• 12 cell per unit

٠

٠

- Cell-level emulation and measurement
- Simulate up to 8V
- Sink and source current up to 5A

Series and Parallel connections For optimized capacity and voltage ratings

Rear

.

Interface Panel & BMS Controller

Battery Management Unit

HIL Testing for BMU and CMU

- Test control and electrical interfaces
- Each cell emulated: up to 6V and 5A
- Emulate the electrical behaviour of battery cells
- Stack up to 312 of virtual battery cells (1600 V)
- Include communication interfaces like isolated SPI or CAN

HIL Testing of full BMS and load

Device under Test can also include the real load (e.g. powertrain or EV charger). The interfaces include electrical power

BMS_ClosedLoop/User Interface * - Simulink sponsored third party support use đ × _ 2 - 2 - 0 SIMULATION DEBUG MODELING FORMAT REAL-TIME APPS ł 101 ٢ 1 2 ÷ D -TET Hold Update All Hardware Data Stop Logic Add App Import X Connected Stop Updates Parameters Settings Recording Analyzer Monitor Inspector Generator Instrument Instrument Instrument Instrument Application * TUNE PARAMETERS RUN ON TARGET $\overline{\mathbb{A}}$ **REVIEW RESULTS** Toggle target computer connection 2000 User Interface Files • ۲ BMS_ClosedLoop 🕨 🖎 User Interface 🕨 Refere Q K N K N Battery module voltage [V] ⇒ Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 A≣ SOC [%] Current limits [A] ~ 20 25 SOC[%] 76.9 SOC[%] 76.9 SOC[%] 79.9 SOC[%] 76.9 SOC[%] 78.9 SOC[%] 76.9 Discharge Charge 24 T [C°] 16.4 T [C°] 15.3 83 80 -100.0 -150 0 34.3 V [V] 4.024 V [V] 4.024 V [V] 4.057 V [V] 4.000 V [V] 4.048 V [V] 4.024 I [mA] I [mA] I [mA] I [mA] I [mA] 0 I [mA] 170 0 0 0 1 Battery module 10.0 [A] Faults Clear Faults current [A] Cell overvoltage -

 $\begin{array}{ccc} -20 & {}^{0} & 20 \\ -40 & & 40 \\ -60 & 10 & 60 \\ -80 & & 80 \\ -100 & & 100 \end{array}$

Battery module SoC [%]

01

>>

External

View diagnostics

Charging

Configuration

Test

scenario

25

temperature [°C]

24.2 [V]

۲**Ξ**

200

100

T=212.908

210

-100 -60 -20 20 60 100

10

- D

1

1

1

Cell balancing

currents [mA]

BallCurr_C5 BallCurr_C6

211

Cell undervoltage

Cell high temperature

Cell low temperature

Module overcurrent

BallCurr_C1 BallCurr_C2 BallCurr_C3 BallCurr_C4

212

213

214

215

Charge

imbalance [mV]

57.49

71%

đ

170000

-

A≣

C.e

0 >>

External

Battery module SoC [%]

T=105.886

70%

. ≫

External

70%

Continuous Integration with Hardware

Workflow

Benefits

Quality - always test against latest changes

Speed - test early, test often

Collaboration – identify integration issues quickly

Audit-ready - trace issues to the source

Continuous Integration with Hardware

Source control in projects

Compare changes

Quickly visualize test reports and results

MUNICH, GERMANY DECEMBER 6 - 7, 2022

Questions

