
An end-to-end approach to Design and Verify BMS:
from Requirements to Virtual Field Testing

Conrado Ramirez
MathWorks

Irina Costachescu
NXP

Marius Andrei
NXP

Carlos Villegas
Speedgoat

Agenda

• System-level Modeling and Verification

• From Model to Embedded Hardware: SiL and PiL Verification

• Real-time verification with HiL Testing

System-level Modeling and Verification

Long Iteration Cycles Safety Critical SystemCollaboration Gap

Simulations & Code Generation Model V&V and HIL TestingMulti-Domain System Modeling

Motivation

Evaluate Battery Management System Behavior

• Simulate interaction between software
modules

• Design & test algorithms for different
operating conditions

• Calibrate software before putting into battery
pack or vehicle

Cell MonitoringBattery Pack Software

Measurement
Cell Diagnostic,
Cell Balancing

Battery Management System Architecture

Supervisory tasks
SOC estimation

Contactor management
Isolation monitoring

Fault detection and recovery
Thermal management
Current & power limits

Typical Battery Management System Architecture
A BMS for a battery pack is typically composed of:

1) Battery Management Unit (BMU)
Centralized control of battery pack. Includes state estimation
(SoC, SoH, SoX). Typically uses CAN as well as proprietary
protocols to interface to CMU

2) Cell Management Units (CMU)
Takes care of cell balancing (active or passive) and measurement
of individual cell voltages (1s) and temperatures.
Typically interfaced using proprietary communication protocols.

3) Battery Junction Box (BJB)
Switching unit connecting to the load that typically includes
current sensors. May interface via CAN bus.

Battery
Management

System

I/O

C

M

U

BMU

BJB

I/O

C

M

U

Model-Based Design Verification Workflow

Textual
requirements

Executable
specification

Model used for
production

code generation

Generated
code

Module and integration
testing at the model level

Back-to-Back
Testing

Reviews and analysis
at model level

Prevention of
unintended functionality

Code

generation
Modeling

Object code

Compilation

and linking

Model Verification

Discover design errors at design time

Code Verification

Gain confidence in the generated code

Simulink Requirements

Authored Requirements

External Requirements

External

Requirements

Requirements

Managements

Tools

• Import from:

• Word / Excel

• IBM® Rational® DOORS®

• ReqIF™ standard

• Update synchronizes

changes from source

• Edit and add further details to

import

• Author requirements

• Export ReqIF

• Enables roundtrip with
external tools

Import

Update

Export

Requirements Import and Export

Manage Requirement Traceability

Implementation Status

Implemented

Justified

Missing

Verification Status

Passed

Failed

Unexecuted

Missing

Systematic Functional Testing
Test Inputs Component Under Test Test Results

Test Cases

Create Test Harnesses

Test Harness

AssessmentsInputs

Test Sequence

Signal Editor

MAT / Excel

file (input)

Test

Assessments

MATLAB Unit Test

MAT / Excel

File (baseline)

Main Model

Test Harness

Component

under test

▪ Isolate Component Under Test
▪ Synchronized, simulation test

environment

Test
Harnesses

▪ Author, manage, organize tests
▪ Execute simulation, equivalence and

baseline tests
▪ Review, export, report

Test
Manager

Test Results

Reports

▪ Specify test inputs, expected
outputs, and tolerances

▪ Construct complex test sequences
and assessments

Test
Authoring

Temporal Assessments

Test Sequence

Test Management

From Model to Embedded Hardware:
SiL and PiL Verification

Hardware Aware Models

DRIVERS, MIDDLEWARE, LIBRARIES

CONFIGURATION, BUILD, DEBUG TOOLS

• Simplify hardware access
by using hardware
optimized software

• Application development inside an IDE

• Build Tools, Debug Tools and Configuration Tools
integrated within the IDE

• Drivers, Middleware and Libraries configuration
and initialization in a graphical environment

REAL TIME MONITOR, DEMO TOOLS

• Check the status of the running on target
application in real time

• Write and read variables, registers,
memory locations

• Monitor signals on the embedded target

• Fast demo design

Embedded Applications Development Environment

From Model to Embedded Hardware

MODEL-BASED

DESIGN TOOLBOX
MBDT

• Collection of Drivers, Libraries and Tools

• Embedded systems design and
deployment on NXP MCUs directly from
Simulink

MATHWORKS ECOSYSTEM

MATLAB/SIMULINK

• Model-Based Design

• Simulation

• Automatic Code Generation

• Verification and Validation

MBDT

From Idea to Application

Integrate

Test

DeployPrototypeDesign

MATHWORKS ECOSYSTEM

MATLAB/SIMULINK

• Model-Based Design

• Simulation

• Automatic Code Generation

• Verification and Validation

MODEL-BASED

DESIGN TOOLBOX
MBDT

• Collection of Drivers, Libraries and Tools

• Embedded systems design and
deployment on NXP MCUs directly from
Simulink

M
B
DT

MBDT

Model-Based Design Toolbox

MCU Configurations: Core, Systems and Peripherals

Applications
Algorithms

Kernels
(HW Independent)

MCU Inputs MCU Outputs

Embedded Applications Development Flow

APPLICATION

LIBRARIES

MIDDLEWARE

DRIVERS

HARDWARE

Embedded Applications Development Flow

MCU Configurations: Core, Systems and Peripherals

Applications
Algorithms

Kernels
(HW Independent)

MCU Inputs MCU Outputs

Model-in-the-Loop

Plant model with test signals

Controller Model

Software-in-the-Loop

C Code on host PC

C code with test signals

Virtual Field Testing

Processor-in-the-Loop

C Code on target MCU

Embedded code with test signals

Model-in-the-Loop

Plant model with test signals

Controller Model

Software-in-the-Loop

C Code on host PC

C code with test signals

Virtual Field Testing

Processor-in-the-Loop

C Code on target MCU

Embedded code with test signals

External Mode

C code on target MCU

Device monitoring

Model-in-the-Loop

Plant model with test signals

Controller Model

Software-in-the-Loop

C Code on host PC

C code with test signals

Virtual Field Testing

Processor-in-the-Loop

C Code on target MCU

Embedded code with test signals

Hardware-in-the-Loop

C code on target MCU
Plant model emulated on Speedgoat

Device under test

Results

Model

Desktop Simulation

(on PC)

Test

Vectors

Model-in-the-Loop
Plant model with test signals

Controller Model

Software-in-the-Loop

C Code on host PC

C code with test signals

Processor-in-the-Loop

C Code on target MCU

Embedded code with test signals

Hardware-in-the-Loop

C code on target MCU

Plant model emulated on Speedgoat

Device under test

MiL - SiL - PiL - HiL

Object Code Execution

(on PC)

Model

Desktop Simulation

(on PC)

Object File

== ?

Compare

Generated

Code

Embedded

Coder

PC

Compiler

Test

Vectors

Results Results

Model-in-the-Loop
Plant model with test signals

Controller Model

Software-in-the-Loop

C Code on host PC

C code with test signals

Processor-in-the-Loop

C Code on target MCU

Embedded code with test signals

Hardware-in-the-Loop

C code on target MCU

Plant model emulated on Speedgoat

Device under test

MiL - SiL - PiL - HiL

Object Code Execution

(on target MCU)

Model

Desktop Simulation

(on PC)

Object File

== ?

Compare

Generated

Code

Embedded

Coder

Cross

Compiler

Test

Vectors

Results Results

Model-in-the-Loop
Plant model with test signals

Controller Model

Software-in-the-Loop

C Code on host PC

C code with test signals

Processor-in-the-Loop

C Code on target MCU

Embedded code with test signals

Hardware-in-the-Loop

C code on target MCU

Plant model emulated on Speedgoat

Device under test

MiL - SiL - PiL - HiL

01010101

10101010

Object Code Execution

(on target MCU)

Model

Desktop Simulation

(on PC)

Object File

== ?

Compare

Generated

Code

Embedded

Coder

Cross

Compiler

Test

Vectors

Results Results

MiL and PiL Equivalence Test

SiL and PiL Verification

Real-Time Verification with
HiL Testing

Real-Time Systems for BMS Testing

EMBEDDED CONTROLLER

REQUIREMENTS

DESKTOP SIMULATION

HARDWARE PROTOTYPE
Battery packs, power electronics, electrical

loads, fast charging

REAL-TIME SIMULATION

HARDWARE-IN-THE-LOOP
SIMULATION

Behavioural model running on a real-time
computer with virtual battery cells and

packs

RAPID CONTROL PROTOTYPING
Control algorithms running on a real-time computer, microcontroller,

or Simulink-programmable FPGA

Real-time
communication

REAL-TIME DEVELOPMENT PLATFORM

Plant
Batteries, loads, cell balancing
electronics, batteries, passive

circuit components

Controller
Algorithms for energy and

thermal management

SYSTEM MODEL

C or HDL Code generated from controller model

C or HDL Code generated from plant model

Typical Battery Management System Architecture
A BMS for a battery pack is typically composed of:

1) Battery Management Unit (BMU)
Centralized control of battery pack. Includes state estimation
(SoC, SoH, SoX). Typically uses CAN as well as proprietary
protocols to interface to CMU

2) Cell Management Units (CMU)
Takes care of cell balancing (active or passive) and measurement
of individual cell voltages (1s) and temperatures.
Typically interfaced using proprietary communication protocols.

3) Battery Junction Box (BJB)
Switching unit connecting to the load that typically includes
current sensors. May interface via CAN bus.

Battery
Management

System

I/O

C

M

U

BMU

BJB

I/O

C

M

U

Battery
Management

System

BMS Currents

• Full load currents: linked to load or
charger. Typically in the range of
hundrends of Amperes for EVs

• Balancing currents: Currents flowing
through cell balancing circuit. Such
circuit could be passive (discharge
cells) or active (redistribute charge).
Typically between 100mA and 5A.

Full load currents

Balancing

currents
I/O

I/O

CMU

CMU

CMU

I/O

Battery Management UnitBJB

I/O

I/O

I/O

HIL Testing of BMU

Device under Test
DUT

• Device under Test (DUT): technique to test embedded control systems where part of the plant
is simulated.

HIL Testing of BMU

• Hardware-in-the-Loop Testing: technique to test embedded control systems where part of the
plant is simulated.

CMU

CMU

CMU

BJB
Battery

Management
Unit

SPI

CAN

I/O

Hardware-in-the-Loop
Simulator

CMU

CMU

CMU

I/O

Battery Management UnitBJB

I/O

I/O

I/O

HIL Testing of BMU and CMU

Device under Test (DUT)

• Cell emulation: mimic the battery cell electrical power (voltage and current) using a real-time
simulation (HIL simulator and power amplification). It is a type of Power HIL.

HIL Testing for BMU and CMU

CMU

CMU

CMU

I/O

I/O

I/O

Battery
Management

Unit
(BMU)

BJB

• Test control and electrical interfaces

• Each cell emulated: up to 6V and 5A

• Emulate the electrical behaviour of battery cells

• Stack up to 312 of virtual battery cells (1600 V)

• Include communication interfaces like isolated SPI or CAN

I/O

I/O with BMU

Interface to Battery Cell Emulator

I/O

I/O

CMU

CMU

CMU

I/O

Battery Management UnitBJB

I/O

I/O

I/O

HIL Testing of full BMS and load
Device under Test can also include the real load (e.g. powertrain or EV charger). The interfaces
include electrical power

Device under Test
DUT

HIL Testing of BMS

I/O

I/O

I/O

Hardware-in-the-Loop
Simulator

+

-

Power Amplifier

I/O

I/O

I/O

I/O

I/O

I/O

B

M

U

BJB

I/O

Built for High-Performance
• Multicore CPU
• Simulink-programmable FPGAs

Front-view Rear-view

Battery Emulation I/O
• Serial and bus communication

(SPI, CAN, UART)
• Cell temperature emulation
• Shunt emulation
• Cell controller emulation
• Fault insertion

Real-Time Simulator

Front

Rear

Cell-level emulation and measurement
• Simulate up to 8V
• Sink and source current up to 5A

Small to Large BMS test systems
• 12 cell per unit
• Stack up to 312 cells
• Voltage isolation of 1.6 kV

Series and Parallel connections
For optimized capacity and voltage ratings

Interlock
HW control of output voltage

Battery Cell Emulator

Interface Panel & BMS Controller

Battery Management Unit

Cell Measurement Unit

Interface Cable

HIL Testing for BMU and CMU

CMU

I/O
Battery

Management
Unit

(BMU)

BJB

• Test control and electrical interfaces

• Each cell emulated: up to 6V and 5A

• Emulate the electrical behaviour of battery cells

• Stack up to 312 of virtual battery cells (1600 V)

• Include communication interfaces like isolated SPI or CAN

I/O

I/O with BMU

Interface to Battery Cell Emulator

I/O

I/O

CMU

Battery Management UnitBJB

I/O

I/O

HIL Testing of full BMS and load
Device under Test can also include the real load (e.g. powertrain or EV charger). The interfaces
include electrical power

Device under Test
DUT

For internal use only 49

Continuous Integration with Hardware

Repeatability – repeatable, automated process

Quality – always test against latest changes

Speed – test early, test often

Collaboration – identify integration issues quickly

Audit-ready – trace issues to the source

Workflow Benefits

Source code

repository

Build and test

results

Controller developer

HIL system engineer

Controller tester

Continuous

Integration Server

Continuous Integration with Hardware

Source code

repository

Build and test

results

Controller developer

HIL system engineer

Controller tester

Continuous

Integration Server

HIL test

server 1

HIL test

server 2

Check model quality and

standard compliance

Quickly visualize test reports

and results

Support for main CI platforms

Source control in projects

Compare changes

Questions

