Agile and dynamic functional coverage
using SQL on the cloud

Filip Dojcinovic, Veriest Solutions, Belgrade, Serbia, (filipd@veriestS.com)

Mihailo Ivanovic, Veriest Solutions, Belgrade, Serbia, (mihailoi@veriestS.com)

The authors would like to thank Mr. Avidan Efody for his contribution to this paper

Veriest 2019

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

mailto:filipd@
mailto:milosm@veriestS.com
mailto:dejanj@veriestS.com

Introduction

* Functional coverage a key metric in most verification project
* Used often to “drive” the verification process
* decoupled and abstracted from the design

» suffers a few major shortcomings
— Hardly portable to anything outside SV running on a hardware simulator
— Can’t be changed in light of the results

— No adding new cover points after running
— way too static, platform limited, and costly to implement

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 2

SYSTEMS INITIATIVE

Functional Coverage

* Coverage collection vs coverage visualization

* Verification plan document linked to coverage results very conv

* Proposed solution addresses coverage collection shortcomings

SYSTEMS INITIATIVE

by using log files as the raw data
allow coverage to be collected from any language/platform combination
by using a standard SQL to process the data

ncing

UCIS standard - interoperability of verification coverage data across multiple tools

enabling exploration, refinement, and even queries that combine data and sequences of events

leveraging UCIS can be integrated with any other sources of coverage

© Accellera Systems Initiative 3

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Traditional vs Proposed flow

Qups,
rEI’.]IJIl'El‘nEHl
was omitted,
modified, added

proposed flow normal flow
High level block Requirements/
diagram specification
* In a traditional flow -> right hand side, [|
— f I i f i Tk ShOK: TWeresting Think about the exact
starts from a list of requirements or spec, data pos (eriace, T o e e |
COMErs) e

— thing about exact situations to cover

T Y

— coverage model including cover groups and assertions is T dd

covergroup has

Oups, my

a bug

i messages o cod seearonsicoproes
derived. hing 109
— Regressions are run, and results are then visualized v y

Run simulations Run simulations

* holes would require debugging, patching and
rerunning

SQL
coverange
database

Proprietery
COVerage
database

L Y

Requirements’ Add SQL quernes

specification = | matching requirements Analyse results

| I
'

Visualization against

2019

DV OIN

requirements DESIGN AND VERIFICATION™
accellera L CONFERENCE AND EXHIBITION
Q © Accellera Systems Initiative 4

SYSTEMS INITIATIVE

Proposed Flow

— while coding testbench come up with is a
list of interesting points to watch

— add logging code into those places
— Run the regression to get a database
— At the end use requirements

— Look at the requirements and link them to
queries

SYSTEMS INITIATIVE

© Accellera Systems Initiative 5

proposed flow

normal flow

High level block diagram
l

s/
on

|

Find interesting points
(interfaces, transactions..)

act
e

Oups,
requirement
was omitted,
modified, added

-
-

¥

L]

Add matching log messages

A

\J

pS
s

covergroup has

Oups, my

abug

-
-

Run simulations

Run simulations

\d

SQL
coverage
database

\J

Proprietery
coverage
database

N SQL queries
Matching requirements
%_
Vls?ezzﬁ:::‘eang‘:mg DESIGN AND VEIgFQJ'IZN""
Nl

CONFERENCE AND EXHIBITION

SQL as a coverage tool

* SQL can be fine-tuned, focused and extended without re-running the sim
— High level of SQL queries enough - Many new possibilities, also few limitations

e assume that there is an already parsed transaction log file collected on an AXI

interface

* placed the transactions in an SQL table called axi_if 1
time rd/wr addr burst len all distinct values in the burst type column — no WRAP type!
150 RD 165377426 INCR 12
250 RD 2310710676 FIXED 13 name value SELECT DISTINCT burst FROM axi if 1
350 WR 2328599037 FIXED 15 RD 0
360 WR 2921785595 INCR 6 WR 1 burst
500 RD 1490070710 INCR O INCR
550 RD 3668650794 FIXED 8 name value FIXED
1000 WR 1314868187 INCR 13 FIXED 0
1100 RD 3114753989 FIXED 10 INCR 1
1110 RD 2032547025 FIXED 14 WRAP 2
1120 WR 2834194867 INCR 4 .)
1490 RD 4294967295 FIXED 8 all distinct values in the burst type column — no WRAP type!

SELECT DISTINCT # (3)
t.name AS expected, # (1)
IF (axi.burst IS NOT NULL, 'TRUE', 'FALSE') AS hit # (4)

burst type t burst; FROM burst_type t
- - LEFT JOIN axi if 1 axi

ON t.name=axi.burst #(2)

typedef enum burst type t {FIXED = 0, INCR = 1, WRAP =2};

covergroup axi tr;

burst : coverpoint burst; expected hit
endgroup INCR TRUE
FIXED TRUE DESIGN AND VER2FQ;|:|23N‘M
WRAP FALSE
accellera o DVLCIM
© Accellera Systems Initiative 6

SYSTEMS INITIATIVE

SQL as a coverage tool 2

* On AXI common to cross burst type and direction

SELECT DISTINCT .
i .nene A5 bust, « All possible expected values

+9 A~ O EVD N BRI TN
R as 1=

. S — vy

[Elaxi burst TS NOT NOIL,__'TROE! _'EALSE') AS hit * match those expected values to the actual values,
FROM|I burst type tl CROSS JOIN rdwr type tTZ

LEFT JUTN aXi T 2 aXi ON what is needed is a ‘LEFT JOIN’ with the AXI transactions
tl.name=axi.burst AND))]
t2.name=axi.rd wr with matching lines that have both burst and rd/wr equal
£1.name <> 'INCR' OR ignoring one of the combinations with ‘WHERE’

t2.name <> 'RD'

: , » Find which combinations were hit
Resulting table:

burst direction hit

INCR RD TRUE
FIXED RD TRUE
FIXED WR TRUE
INCR WR TRUE
WRAP RD FALSE
WRAP WR FALSE

2019
accellera - DV
© Accellera Systems Initiative 7

SYSTEMS INITIATIVE

Coverage percentage

* One of the most important part in functional coverage
Example: Coverage numbers across burst type, direction and memory segment.

SELECT AVG(hit)*100 AS coverage number FROM (
SELECT DISTINCT
tl.name AS burst,

t2.name AS direction,
+ 2 ~+ K ’Iﬂ(\ﬂﬂﬂﬁﬂoo Z\AS mmmmmm i

—— s — — - an-an~ an-an~ o~ oy A=A ELas TR |

IF (axi.addr IS NOT NULL, 1, 0) AS hit TRUE/FALSE column replaced with binary

FROM burst type tl
CROSS JOIN rdwr tvpe t2 .
CROSS JOTN (SELECT ctr FROM ctr to 100 WHERE ctr < Qbuckets) t3 the address range split in buckets and
TEFT JUIN axXxi if Z axi ON S generated a new list of expected buckets
tl.name=axi.burst AND
t2.name=axi.rd wr AND
t3.ctr=floor (axi.addr/1000000000)) t4

Average function can be introduced

coverage number
29.1666

2019

DESIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 8

SYSTEMS INITIATIVE

Getting the data on the cloud

* Cloud service —any available service can be used | L SRR o

e Data manipulation glue code — python used
* Steps

— Print transactions and data types into log »

— Having the logs and type information files uploaded to the Cioud
— Turn these logs in to SQL tables (using available cloud services)
— Query the tables for coverage as described

— As a last step visualize the tables linked to a test plan, possibly alongside other
forms of coverage (legacy SV, formal, SVA).

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 9

SYSTEMS INITIATIVE

Printing

* Only one step in verification environment — print statements
— transactions
— simulation points and
— all possible enumerated data types ...

 The example of one way how to do it is shown below:

//initialization section: print type information for the fields in our log
Sdisplay ("# Transaction meta: %s, %d, %s, %d, %d, %s", Stypename (tr.dir),
$size(tr.addr), Stypename (tr.burst), $size(tr.len), $size(tr.id),

Stypename (tr.lock)) ;

/...

//run section: print the interesting parst of each transaction into the log
Sdisplay ("# Time: %t, dir: %$s, addr: %d, burst: %s, len: %d, id: %d, lock:
%s,",Stime (), tr.dir.name, tr.addr, tr.burst.name, tr.len, tr.id, tr.lock.name);

2019

DESIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 10

SYSTEMS INITIATIVE

Additional data

* To get cross coverage including holes the type information needed
« Sdisplay statement translate into a format that can be read into a database.
* Easily done with python

types.json

{"enum type name": "axi vip::dir t", "enum string": "RD", "enum int": "0"}
{"enum type name": "axi vip::dir t", "enum string": "WR", "enum int": "1"}
{"enum type name": "axi vip::burst t", "enum string": "FIXED", "enum int": "O0"}
{"enum type name": "axi vip::burst t", "enum string": "INCR", "enum int": "1"}
{"enum type name": "axi vip::burst t", "enum string": "WRAP", "enum int": "2"}
{"enum type name": "axi vip::lock t", "enum string": "NORMAL", "enum int": "0"}
{"enum type name": "axi vip::lock t", "enum string": "EXCLUSIVE", "enum int": "1"}
{"enum type name": "axi vip::lock t", "enum string": "LOCKED", "enum int": "2"}

columns.csv

dir, axi vip::dir ¢, 0
addr, int, 32
burst, axi vip::burst t, O
len, int, 4
id, int, 4
lock, axi vip::lock t, 0

2019

DESIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

Upload to the cloud

* Directory structure on the cloud
— For a single cover group
— Sampled at the same time

simple tb/
testl
L axi master 1
—— columns
L — columns.csv
—— log
L transactions.log
— types info
L— types.json

2019

DESIGN AND VERIFICATION™

accellera DV

© Accellera Systems Initiative 12
SYSTEMS INITIATIVE

SQL tables

* Cloud platforms have different services that employ SQL queries on the data

e Used example platform — service that directly creates DB and tables from files
* “json” and “csv” files are natively translated

* Log files can be translated with user defined format

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 13

SYSTEMS INITIATIVE

SQL tables

* Main table —log
 Others: Meta data for all types, Enum type specific table

CREATE EXTERNAL TABLE demo.axi_ifl_trans (

"time bigint,

"dir" string,

"addr ' bigint,

"burst® string,

"len’ smallint,

"id" smallint,

"lock™ string

)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde?.RegexSerDe'

WITH SERDEPROPERTIES (

"input.regex'='# Time: * ([~ ~,1*), dir: * ([~ *,1*), addr: *([" *~,1*),

burst: * ([~ *,]1*), len: *([" ~,]*), 1d: *(["~ *,]1*), lock: * ([~ *,]1*),'

) LOCATION 's3://db-name/simple tb/testl/axi master 1/log/'

TBLPROPERTIES ('has encrypted data'='false'); 2019

DESIGN AND VERIFICATION™

accellera DV

© Accellera Systems Initiative 14
SYSTEMS INITIATIVE

Last step — query & visualize

* Use queries to get interesting points

Advanced example:

- interrupted exclusive read/write pairs

» group the results by the time of the exclusive-read

» ask for the minimum on the interfering write and the
exclusive-write

» To remove the false paths

order the results by addr and write_time and look for

max(read_time)

addr read_time interrupted_at write_time
1 1490070710 0 26 181
2 1490070710 207 290 300

SYSTEMS INITIATIVE

© Accellera Systems Initiative

select first tr.addr as addr, first tr.time as read time,
interrupted at, min(second tr.time) as write time

min(middle_tr.time) as

f 1 gt
select row number () over () as num,
innerl.time, innerl.addr,innerl.dir, innerl.lock
from axi ifl transactions innerl
where innerl.dir = 'WR' or innerl.lock = 'EXCLUSIVE'
order by innerl.addr, innerl.time) as first tr,
(
ISES =1 o2 wam o) 9 {UU1 {10 =3 o W AN GA VA= b e Brc RS EE R BH 1LY
innerl.time, innerl.addr, innerl.dir,innerl.lock
from axi ifl transactions innerl
where innerl.dir = 'WR' or innerl.lock = 'EXCLUSIVE'
order by innerl.addr, innerl.time) as second tr,
(
select row number () over () as num,

innerl.time, innerl.addr, innerl.dir,innerl.lock
from axi ifl transactions innerl
where innerl.dir = 'WR' or innerl.lock = 'EXCLUSIVE'

crder by innerl oaddr innerl +ime)l ~c middla +r

where first tr.addr = second tr.addr and
second tr.addr = middle tr.addr and
first tr.lock = 'EXCLUSIVE' and second tr.lock = 'EXCLUSIVE' and
first tr.dir = 'RD' and second tr.dir = 'WR' and middle tr.dir = 'WR' and
first tr.num < middle tr.num and middle tr.num < second tr.num
group by 1,2;

2019

DESIGN AND VERIFICATION™

DVLCOIN

1 5 CONFERENCE AND EXHIBITION

Conclusions

e At a high level SQL can replace almost all aspects of System Verilog
coverage

* Using queries
— dynamic and platform independent
— Can be done long after the simulation has ended
— Can be modified and debugged on-the-fly
— Give the same information in a more convenient way
— Can do much more with the data at hand

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 16

SYSTEMS INITIATIVE

Questions?

2019

DESIGN AND VERIFICATION™

S'(STE INTIATIVE m

	� � Agile and dynamic functional coverage using SQL on the cloud
	Introduction
	Functional Coverage
	Traditional vs Proposed flow
	Proposed Flow
	SQL as a coverage tool
	SQL as a coverage tool 2
	Coverage percentage
	Getting the data on the cloud
	Printing
	Additional data
	Upload to the cloud
	SQL tables
	SQL tables
	Last step – query & visualize
	Conclusions
	Questions?

