
Agile and dynamic functional coverage
using SQL on the cloud

Filip Dojcinovic, Veriest Solutions, Belgrade, Serbia, (filipd@veriestS.com)
Mihailo Ivanovic, Veriest Solutions, Belgrade, Serbia, (mihailoi@veriestS.com)

1

The authors would like to thank Mr. Avidan Efody for his contribution to this paper

mailto:filipd@
mailto:milosm@veriestS.com
mailto:dejanj@veriestS.com

Introduction
• Functional coverage a key metric in most verification project
• Used often to “drive” the verification process
• decoupled and abstracted from the design
• suffers a few major shortcomings

– Hardly portable to anything outside SV running on a hardware simulator
– Can’t be changed in light of the results
– No adding new cover points after running
– way too static, platform limited, and costly to implement

© Accellera Systems Initiative 2

Functional Coverage

• Coverage collection vs coverage visualization
• Verification plan document linked to coverage results very convincing
• UCIS standard - interoperability of verification coverage data across multiple tools

• Proposed solution addresses coverage collection shortcomings
– by using log files as the raw data
– allow coverage to be collected from any language/platform combination
– by using a standard SQL to process the data
– enabling exploration, refinement, and even queries that combine data and sequences of events
– leveraging UCIS can be integrated with any other sources of coverage

© Accellera Systems Initiative 3

Traditional vs Proposed flow

© Accellera Systems Initiative 4

• In a traditional flow -> right hand side,
– starts from a list of requirements or spec,
– thing about exact situations to cover
– coverage model including cover groups and assertions is

derived.
– Regressions are run, and results are then visualized

• holes would require debugging, patching and
rerunning

Proposed Flow
– while coding testbench come up with is a

list of interesting points to watch
– add logging code into those places
– Run the regression to get a database
– At the end use requirements
– Look at the requirements and link them to

queries

© Accellera Systems Initiative 5

High level block diagram

Find interesting points
(interfaces, transactions..)

Add matching log messages

Run simulations

SQL queries
Matching requirements

SQL as a coverage tool
• SQL can be fine-tuned, focused and extended without re-running the sim

– High level of SQL queries enough - Many new possibilities, also few limitations
• assume that there is an already parsed transaction log file collected on an AXI

interface
• placed the transactions in an SQL table called axi_if_1

© Accellera Systems Initiative 6

time rd/wr addr burst len
150 RD 165377426 INCR 12
250 RD 2310710676 FIXED 13
350 WR 2328599037 FIXED 15
360 WR 2921785595 INCR 6
500 RD 1490070710 INCR 0
550 RD 3668650794 FIXED 8
1000 WR 1314868187 INCR 13
1100 RD 3114753989 FIXED 10
1110 RD 2032547025 FIXED 14
1120 WR 2834194867 INCR 4
1490 RD 4294967295 FIXED 8

SELECT DISTINCT burst FROM axi_if_1

burst
INCR
FIXED

all distinct values in the burst type column – no WRAP type!

typedef enum burst_type_t {FIXED = 0, INCR = 1, WRAP =2};

//…
burst_type_t burst;

covergroup axi_tr;
 burst : coverpoint burst;
endgroup

name value
RD 0
WR 1

name value
FIXED 0
INCR 1
WRAP 2

SELECT DISTINCT # (3)
 t.name AS expected, # (1)
 IF(axi.burst IS NOT NULL, 'TRUE', 'FALSE') AS hit #(4)
FROM burst_type t
LEFT JOIN axi_if_1 axi
 ON t.name=axi.burst #(2)
expected hit
INCR TRUE
FIXED TRUE
WRAP FALSE

all distinct values in the burst type column – no WRAP type!

SQL as a coverage tool 2
• On AXI common to cross burst type and direction

© Accellera Systems Initiative 7

• All possible expected values

• match those expected values to the actual values,
what is needed is a ‘LEFT JOIN’ with the AXI transactions

with matching lines that have both burst and rd/wr equal

• ignoring one of the combinations with ‘WHERE’

• Find which combinations were hit

burst direction hit
INCR RD TRUE
FIXED RD TRUE
FIXED WR TRUE
INCR WR TRUE
WRAP RD FALSE
WRAP WR FALSE

Resulting table:

SELECT DISTINCT
 t1.name AS burst,
 t2.name AS rd_wr,
 IF(axi.burst IS NOT NULL, 'TRUE', 'FALSE') AS hit
FROM burst_type t1 CROSS JOIN rdwr_type t2
LEFT JOIN axi_if_2 axi ON
 t1.name=axi.burst AND
 t2.name=axi.rd_wr
WHERE
 t1.name <> 'INCR' OR
 t2.name <> 'RD'

Coverage percentage

© Accellera Systems Initiative 8

• One of the most important part in functional coverage
Example: Coverage numbers across burst type, direction and memory segment.

SELECT AVG(hit)*100 AS coverage_number FROM (
 SELECT DISTINCT
 t1.name AS burst,
 t2.name AS direction,
 t3.ctr * 1000000000 AS segment,
 IF(axi.addr IS NOT NULL, 1, 0) AS hit
FROM burst_type t1
CROSS JOIN rdwr_type t2
CROSS JOIN (SELECT ctr FROM ctr_to_100 WHERE ctr < @buckets) t3
LEFT JOIN axi_if_2 axi ON
 t1.name=axi.burst AND
 t2.name=axi.rd_wr AND
 t3.ctr=floor(axi.addr/1000000000)) t4

TRUE/FALSE column replaced with binary

Average function can be introduced

coverage_number
29.1666

the address range split in buckets and
generated a new list of expected buckets

Getting the data on the cloud
• Cloud service – any available service can be used
• Data manipulation glue code – python used
• Steps

– Print transactions and data types into log
– Having the logs and type information files uploaded to the cloud
– Turn these logs in to SQL tables (using available cloud services)
– Query the tables for coverage as described
– As a last step visualize the tables linked to a test plan, possibly alongside other

forms of coverage (legacy SV, formal, SVA).

© Accellera Systems Initiative 9

Printing
• Only one step in verification environment – print statements

– transactions
– simulation points and
– all possible enumerated data types …

• The example of one way how to do it is shown below:

© Accellera Systems Initiative 10

//initialization section: print type information for the fields in our log
$display("# Transaction meta: %s, %d, %s, %d, %d, %s", $typename(tr.dir),
$size(tr.addr), $typename(tr.burst), $size(tr.len), $size(tr.id),
$typename(tr.lock));
// ...
//run section: print the interesting parst of each transaction into the log
$display("# Time: %t, dir: %s, addr: %d, burst: %s, len: %d, id: %d, lock:
%s,",$time(), tr.dir.name, tr.addr, tr.burst.name, tr.len, tr.id, tr.lock.name);

Additional data

© Accellera Systems Initiative 11

• To get cross coverage including holes the type information needed
• $display statement translate into a format that can be read into a database.
• Easily done with python

types.json
{"enum_type_name": "axi_vip::dir_t", "enum_string": "RD", "enum_int": "0"}
{"enum_type_name": "axi_vip::dir_t", "enum_string": "WR", "enum_int": "1"}
{"enum_type_name": "axi_vip::burst_t", "enum_string": "FIXED", "enum_int": "0"}
{"enum_type_name": "axi_vip::burst_t", "enum_string": "INCR", "enum_int": "1"}
{"enum_type_name": "axi_vip::burst_t", "enum_string": "WRAP", "enum_int": "2"}
{"enum_type_name": "axi_vip::lock_t", "enum_string": "NORMAL", "enum_int": "0"}
{"enum_type_name": "axi_vip::lock_t", "enum_string": "EXCLUSIVE", "enum_int": "1"}
{"enum_type_name": "axi_vip::lock_t", "enum_string": "LOCKED", "enum_int": "2"}

columns.csv
dir, axi_vip::dir_t, 0
addr, int, 32
burst, axi_vip::burst_t, 0
len, int, 4
id, int, 4
lock, axi_vip::lock_t, 0

Upload to the cloud
• Directory structure on the cloud

– For a single cover group
– Sampled at the same time

© Accellera Systems Initiative 12

simple_tb/
├── test1
│ └── axi_master_1
│ ├── columns
│ │ └── columns.csv
│ └── log
│ └── transactions.log
└── types_info
 └── types.json

SQL tables
• Cloud platforms have different services that employ SQL queries on the data
• Used example platform – service that directly creates DB and tables from files
• “json” and “csv” files are natively translated
• Log files can be translated with user defined format

© Accellera Systems Initiative 13

SQL tables

CREATE EXTERNAL TABLE demo.axi_if1_trans (
 `time` bigint,
 `dir` string,
 `addr` bigint,
 `burst` string,
 `len` smallint,
 `id` smallint,
 `lock` string
)
 ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
 WITH SERDEPROPERTIES (
 'input.regex'='# Time: *([^ ^,]*), dir: *([^ ^,]*), addr: *([^ ^,]*),
burst: *([^ ^,]*), len: *([^ ^,]*), id: *([^ ^,]*), lock: *([^ ^,]*),'
) LOCATION 's3://db-name/simple_tb/test1/axi_master_1/log/'
 TBLPROPERTIES ('has_encrypted_data'='false');

© Accellera Systems Initiative 14

• Main table – log
• Others: Meta data for all types, Enum type specific table

Last step – query & visualize
• Use queries to get interesting points
Advanced example:
- interrupted exclusive read/write pairs

© Accellera Systems Initiative 15

• group the results by the time of the exclusive-read
• ask for the minimum on the interfering write and the

exclusive-write
• To remove the false paths
order the results by addr and write_time and look for
max(read_time)

select first_tr.addr as addr, first_tr.time as read_time, min(middle_tr.time) as
interrupted_at, min(second_tr.time) as write_time
from (
 select row_number() over () as num,
 inner1.time,inner1.addr,inner1.dir,inner1.lock
 from axi_if1_transactions inner1
 where inner1.dir = 'WR' or inner1.lock = 'EXCLUSIVE'
 order by inner1.addr, inner1.time) as first_tr,
 (
 select row_number() over () as num,
 inner1.time,inner1.addr, inner1.dir,inner1.lock
 from axi_if1_transactions inner1
 where inner1.dir = 'WR' or inner1.lock = 'EXCLUSIVE'
 order by inner1.addr, inner1.time) as second_tr,
 (
 select row_number() over () as num,
 inner1.time,inner1.addr,inner1.dir,inner1.lock
 from axi_if1_transactions inner1
 where inner1.dir = 'WR' or inner1.lock = 'EXCLUSIVE'
 order by inner1.addr, inner1.time) as middle_tr
where first_tr.addr = second_tr.addr and
 second_tr.addr = middle_tr.addr and
 first_tr.lock = 'EXCLUSIVE' and second_tr.lock = 'EXCLUSIVE' and
 first_tr.dir = 'RD' and second_tr.dir = 'WR' and middle_tr.dir = 'WR' and
 first_tr.num < middle_tr.num and middle_tr.num < second_tr.num
group by 1,2;

Conclusions
• At a high level SQL can replace almost all aspects of System Verilog

coverage
• Using queries

– dynamic and platform independent
– Can be done long after the simulation has ended
– Can be modified and debugged on-the-fly
– Give the same information in a more convenient way
– Can do much more with the data at hand

© Accellera Systems Initiative 16

Questions?

© Accellera Systems Initiative 17

	� � Agile and dynamic functional coverage using SQL on the cloud
	Introduction
	Functional Coverage
	Traditional vs Proposed flow
	Proposed Flow
	SQL as a coverage tool
	SQL as a coverage tool 2
	Coverage percentage
	Getting the data on the cloud
	Printing
	Additional data
	Upload to the cloud
	SQL tables
	SQL tables
	Last step – query & visualize
	Conclusions
	Questions?

