(2025

DESIGN AND VERIEFICATION ™

DVIOCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Advancing Open-Source Verification:
Enabling Full Randomization in Verilator

Yilou Wang,
PlanV GmbH, Munich, Germany

)




Roadmap

* Background & Motivation
* Verilator in open-source verification
 Randomization in SystemVerilog
 Verilator Before Our Work

e Contribution & Results
e Basic randomization for aggregates
e Constrained randomization for aggregates
* Three UVM testbenches run on Verilator

e Conclusion & Future Work




Open-Source Verification on the Rise

* Open-source EDA is receiving increasing attention and adoption

* Verilator: the most widely used open-source RTL simulator
* Fast, Cycle-accurate, Open-source

e But limited SystemVerilog feature support, especially for advanced
verification features like randomization

* This gap prevents Verilator from being more widely used in UVM-based
verification




Randomization in SystemVerilog

e Core to functional verification = g

generates diverse stimuli N

olution space assignment

rand/randc
variables

* Two main forms:
* Basic randomization - pure random values

 Constrained randomization > random
values under user-defined rules

failure/no solutions

(2025

DESIGN AND VERIFICATION ™




Verilator’s Existing Randomization (Before
Our Work)

e Basic randomization (primitive only)
* Internal RNG generates value - masked to bit width - assigned to var

* Constrained randomization (primitive only)
e External SMT-LIB2 solver integration
» Verilator translates constraint blocks - solver expressions (smt-lib2 format)

* Incomplete Randomization support - UVM testbenches cannot run

* Our goal is to support full randomization in Verilator, moving it closer to
advanced open-source verification capabilities.




Our Contribution

* Extended Verilator randomization beyond primitives

* Now supports:
* Arrays (fixed, dynamic, queue, associative)
 Structs (packed & unpacked)
* Unions
* Nested combinations

e Both basic and constrained.




Basic Randomization for Aggregates

* Aggregated types = composite
(structs, arrays, unions)

* Recursive traversal - peel layer
by layer

e Stop at primitive type - apply
existing RNG support

check data
type

—>

—>

—>

)

StructDType
| —

.

UnionDType

)

ArrayDType
| —

N

Others

.

EnumDType

—
)

%[Assign data = RNG]

BasicDType

~—




The Challenge: AST Explosion

e Example: 3D array (5x4x6) - 120 primitive elements
* In Verilate phase: SV - AST - C++

 Randomization handled early (e.g., step 13)

e |f fully unrolled - AST becomes very large

e Large AST propagates through all later passes - hurts performance

Verilator

] verilate ] simulate
SV source code J C++ files Simulation Results

)




Solution: foreach Node

e Utilize foreach node in AST as
loop abstraction for arrays

* Expansion delayed to later step
(e.g., step 40)

* Improves performance without
losing functionality

Before: Fully Expanded

Primitive Node
{SD Array (5x4x6)J—>—{ Primitive Node —» | ASTbloats | —» {slows later passes}

... (120 in total)

After: foreach Node

[SD Array (5x4x6)Hforeach nodeJ—P[

Compact AST
(early passes)

Expanded later
(step 40)

(2025

DESIGN AND VERIFICATION ™



Constrained Randomization for Aggregates

* Existing flow:
* Verilate phase = translate constraints into SMT-LIB2 format
e Simulate phase - call external solver to find solutions

* Extension to aggregates: same core idea - decompose into primitives

* Different decomposition strategies:
* Arrays = flatten into elements (index-based)
 Structs/Unions - flatten into members (dot notation)
* Nested - combine both




Constrained Randomization for Arrays

* Arrays
* packed array = treated as a long vector

e unpacked array
* fixed-size - fixed size of index, like arr[2] [ 3]
e variable-size mapped to SMT-LIB2

S—

* dynamic array/queue - like arr[ ] array logic (QF_ABV)
e associative array - index can be everything, like arr [string]

* In QF ABV(array-bit-vector)
e Declare full array as a var
* Use select to fetch the specific elements
* Use store to receive the value of elements

* Enables element-wise constraint solving while preserving array structure

(2025

DESIGN AND VERIFICATION ™

DVCON

CONFERENCE AND EXHIBITI ON




Validation with UVM Testbenches

* Evaluated Verilator with three SV-UVM testbenches
 Different structures & complexity levels

* All validated in QuestaSim (reference)

e Goal & check how far Verilator can go with newly-supported
randomization feature




Three UVM Testbenches

 uvm_test_1 (simple agent-based)
* Active + passive agent
* Virtual sequence drives constrained random stimulus
* Result: Pass (Verilate + Simulate)

/te st \

4 Seq )
env

Active Agent Passive Agent




Three UVM Testbenches

/test \
4 Seq N
env
* uvm_test 2 (BFM handle based) _ .
— - . , Active Agent Passive Agent
e Bus Functional Model as virtual interface
* Requires dynamic vif handles \_ \ //
* Result: Fail at Verilate phase
BFM




Three UVM Testbenches

/ debug virtual seq interrupt virtual seq \
Interrupt
Agent

ISACOV
Agent
-

peripheral
virtual seq

riscv tool chain o instr fetch
#  virtual seq

load & store
virtual seq

» RF Model

* uvm_test_cvv (industrial-style, inspired by OpenHW)
* Config class with multiple rand fields
* Advanced UVM features (factory + config DB)
e Result: Pass Verilate, Fail Simulate




Results Summary

* Simple UVM environments - now supported
e More advanced UVM features — still limited

e Shows both progress and remaining gaps




Conclusion

* Extended Verilator randomization from primitives - aggregates
* Arrays, structs, unions, nested combinations
* Both basic and constrained randomization

e Optimized architecture (foreach AST, flattening, chunk encoding)

* All changes upstreamed to Verilator as open-source contribution

e Demonstrated with UVM testbenches

e Simple - fully supported
 Complex = partial limitations




Future Directions

* More optimization for the current randomization process

* Still missing pieces for full UVM compatibility left to be addressed:
* Virtual interface handling
* Global constraints
* Assertions

* Long-term goal - fully UVM-capable open-source simulator




Questions




Backup --- Associative Arrays: Handling Wide
Keys

e Associative arrays: index can be any data type
e bit[1:0], int, longint, even string
* Simulator is static > must map dynamic keys into static containers
* Problem: wide keys (e.g., 10k bits or string) waste storage if container always max width

e Solution: chunk-based encoding
e Common case (< 32 bits) - store directly

e Wide keys = split into 32-bit chunks
* e.g., 128-bit key - 4 x 32-bit chunks
* Alongside chunks, record chunk count to reconstruct original key

(2025

DESIGN AND VERIFICATION ™




Backup --- Solution: Chunk-based Encoding

e ~

Original Key Type

v

| Get Key Bit Width

std::vector<uint32_t> indices| 16 | 32 | 32 | 16 | 32 Yes—)[smre key direCt'Y]

in one chunk
r\f
i l Split into several 32-bit chunks

Original key shortint 80 bits int L

std::vector<size_t> widths 1 3 1

Record chunk count in widths vector

(2025

DESIGN AND VERIFICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION




Backup --- Constrained Randomization for
Structs

* Structs & Unions share one container in Verilator
* Packed structs - treated as a single long bitvector (QF BV logic)
* Unpacked structs - need flattening into members

 SMT-LIB2: no direct support for struct types
* Cannot declare as a whole variable
* Must decompose into primitives
e Our solution: use dot notation (e.g., struct_ a.mem1.a)

* Allows peeling layer by layer
* Preserves hierarchy for solver mapping and assignment




Backup --- Constrained Random for Nested
Aggregated Data Types

* Struct Wlth array fle|dS Struct with Array Fields
* Essence: struct stuct S_a{
. Members may be arrays l})it [7:0] arr[4] S.arr[0..3] (dot-notation preserved) }
* Decomposed during Verilate phase
Array of Structs

* Keep dot-notation for array members

M—{ arr_s[0], arr_s[1], ... ]—>[ arr[0].f_a, arr[0].f_b ... }

e Array of structs
* Essence: array
* First handled as array element (primitive)
e Struct decomposition deferred to Simulate phase

* Both cases required special handling in Verilator




Backup --- Summary of Support
Contributions

e Basic randomization support for All aggregated date types -
recursive traversal + foreach AST node

* Constrained randomization support for All kinds of Arrays - QF ABV
+ chunk-based encoding

* Constrained randomization support for Structs/Unions =
flatten fields with dot notation

* Two special Nested types - Struct with array fields + Array of Structs




Backup --- The Randomization Gap in
Verilator

 Commercial simulators (e.g., QuestaSim)
e Full randomization support: primitives + aggregates(arrays, structs, unions)

 Verilator (before our work)
* Only supports primitive types randomization
* No support for arrays, structs, unions, nested aggregates

e Result: incomplete SystemVerilog support - UVM testbenches cannot run

* Our goal is to support full randomization in Verilator, moving it closer to
advanced open-source verification capabilities.




	Slide 1: Advancing Open-Source Verification:  Enabling Full Randomization in Verilator
	Slide 2: Roadmap
	Slide 3: Open-Source Verification on the Rise
	Slide 4: Randomization in SystemVerilog
	Slide 5: Verilator’s Existing Randomization (Before Our Work)
	Slide 6: Our Contribution
	Slide 7: Basic Randomization for Aggregates
	Slide 8: The Challenge: AST Explosion
	Slide 9: Solution: foreach Node
	Slide 10: Constrained Randomization for Aggregates
	Slide 11: Constrained Randomization for Arrays
	Slide 12: Validation with UVM Testbenches
	Slide 13: Three UVM Testbenches
	Slide 14: Three UVM Testbenches
	Slide 15: Three UVM Testbenches
	Slide 16: Results Summary
	Slide 17: Conclusion
	Slide 18: Future Directions
	Slide 19: Questions
	Slide 20: Backup --- Associative Arrays: Handling Wide Keys
	Slide 21: Backup --- Solution: Chunk-based Encoding
	Slide 22: Backup --- Constrained Randomization for Structs
	Slide 23: Backup --- Constrained Random for Nested Aggregated Data Types
	Slide 24: Backup --- Summary of Support Contributions
	Slide 25: Backup --- The Randomization Gap in Verilator

