
Advancing Open-Source Verification:
Enabling Full Randomization in Verilator

Yilou Wang,
PlanV GmbH, Munich, Germany

Roadmap

• Background & Motivation
• Verilator in open-source verification

• Randomization in SystemVerilog

• Verilator Before Our Work

• Contribution & Results
• Basic randomization for aggregates

• Constrained randomization for aggregates

• Three UVM testbenches run on Verilator

• Conclusion & Future Work

Open-Source Verification on the Rise

• Open-source EDA is receiving increasing attention and adoption

• Verilator: the most widely used open-source RTL simulator
• Fast, Cycle-accurate, Open-source

• But limited SystemVerilog feature support, especially for advanced
verification features like randomization

• This gap prevents Verilator from being more widely used in UVM-based
verification

Randomization in SystemVerilog

• Core to functional verification →
generates diverse stimuli

• Two main forms:
• Basic randomization → pure random values

• Constrained randomization → random
values under user-defined rules

Verilator’s Existing Randomization (Before
Our Work)
• Basic randomization (primitive only)

• Internal RNG generates value → masked to bit width → assigned to var

• Constrained randomization (primitive only)
• External SMT-LIB2 solver integration

• Verilator translates constraint blocks → solver expressions (smt-lib2 format)

• Incomplete Randomization support → UVM testbenches cannot run

• Our goal is to support full randomization in Verilator, moving it closer to
advanced open-source verification capabilities.

Our Contribution

• Extended Verilator randomization beyond primitives

• Now supports:
• Arrays (fixed, dynamic, queue, associative)

• Structs (packed & unpacked)

• Unions

• Nested combinations

• Both basic and constrained.

Basic Randomization for Aggregates

• Aggregated types = composite
(structs, arrays, unions)

• Recursive traversal → peel layer
by layer

• Stop at primitive type → apply
existing RNG support

The Challenge: AST Explosion

• Example: 3D array (5×4×6) → 120 primitive elements

• In Verilate phase: SV → AST → C++

• Randomization handled early (e.g., step 13)

• If fully unrolled → AST becomes very large

• Large AST propagates through all later passes → hurts performance

Solution: foreach Node

• Utilize foreach node in AST as
loop abstraction for arrays

• Expansion delayed to later step
(e.g., step 40)

• Improves performance without
losing functionality

Constrained Randomization for Aggregates

• Existing flow:
• Verilate phase → translate constraints into SMT-LIB2 format

• Simulate phase → call external solver to find solutions

• Extension to aggregates: same core idea → decompose into primitives

• Different decomposition strategies:
• Arrays → flatten into elements (index-based)

• Structs/Unions → flatten into members (dot notation)

• Nested → combine both

Constrained Randomization for Arrays
• Arrays

• packed array → treated as a long vector

• unpacked array
• fixed-size → fixed size of index, like arr[2][3]

• variable-size

• dynamic array/queue → like arr[]

• associative array → index can be everything, like arr[string]

• In QF_ABV(array-bit-vector)
• Declare full array as a var

• Use select to fetch the specific elements

• Use store to receive the value of elements

• Enables element-wise constraint solving while preserving array structure

mapped to SMT-LIB2
array logic (QF_ABV)

Validation with UVM Testbenches

• Evaluated Verilator with three SV-UVM testbenches

• Different structures & complexity levels

• All validated in QuestaSim (reference)

• Goal → check how far Verilator can go with newly-supported
randomization feature

Three UVM Testbenches
• uvm_test_1 (simple agent-based)

• Active + passive agent
• Virtual sequence drives constrained random stimulus
• Result: Pass (Verilate + Simulate)

• uvm_test_2 (BFM handle based)
• Bus Functional Model as virtual interface
• Requires dynamic vif handles
• Result: Fail at Verilate phase

• uvm_test_cvv (industrial-style, inspired by OpenHW)
• Config class with multiple rand fields
• Advanced UVM features (factory + config DB)
• Result: Pass Verilate, Fail Simulate

Three UVM Testbenches
• uvm_test_1 (simple agent-based)

• Active + passive agent
• Virtual sequence drives constrained random stimulus
• Result: Pass (Verilate + Simulate)

• uvm_test_2 (BFM handle based)
• Bus Functional Model as virtual interface
• Requires dynamic vif handles
• Result: Fail at Verilate phase

• uvm_test_cvv (industrial-style, inspired by OpenHW)
• Config class with multiple rand fields
• Advanced UVM features (factory + config DB)
• Result: Pass Verilate, Fail Simulate

Three UVM Testbenches
• uvm_test_1 (simple agent-based)

• Active + passive agent
• Virtual sequence drives constrained random stimulus
• Result: Pass (Verilate + Simulate)

• uvm_test_2 (BFM handle based)
• Bus Functional Model as virtual interface
• Requires dynamic vif handles
• Result: Fail at Verilate phase

• uvm_test_cvv (industrial-style, inspired by OpenHW)
• Config class with multiple rand fields
• Advanced UVM features (factory + config DB)
• Result: Pass Verilate, Fail Simulate

Results Summary

• Simple UVM environments → now supported

• More advanced UVM features → still limited

• Shows both progress and remaining gaps

Conclusion

• Extended Verilator randomization from primitives → aggregates
• Arrays, structs, unions, nested combinations

• Both basic and constrained randomization

• Optimized architecture (foreach AST, flattening, chunk encoding)

• All changes upstreamed to Verilator as open-source contribution

• Demonstrated with UVM testbenches
• Simple → fully supported

• Complex → partial limitations

Future Directions

• More optimization for the current randomization process

• Still missing pieces for full UVM compatibility left to be addressed:
• Virtual interface handling

• Global constraints

• Assertions

• ...

• Long-term goal → fully UVM-capable open-source simulator

Questions

Backup --- Associative Arrays: Handling Wide
Keys
• Associative arrays: index can be any data type

• bit[1:0], int, longint, even string

• Simulator is static → must map dynamic keys into static containers

• Problem: wide keys (e.g., 10k bits or string) waste storage if container always max width

• Solution: chunk-based encoding
• Common case (≤ 32 bits) → store directly

• Wide keys → split into 32-bit chunks
• e.g., 128-bit key → 4 × 32-bit chunks

• Alongside chunks, record chunk count to reconstruct original key

Backup --- Solution: Chunk-based Encoding

Backup --- Constrained Randomization for
Structs
• Structs & Unions share one container in Verilator

• Packed structs → treated as a single long bitvector (QF_BV logic)

• Unpacked structs → need flattening into members

• SMT-LIB2: no direct support for struct types
• Cannot declare as a whole variable

• Must decompose into primitives

• Our solution: use dot notation (e.g., struct_a.mem1.a)
• Allows peeling layer by layer

• Preserves hierarchy for solver mapping and assignment

Backup --- Constrained Random for Nested
Aggregated Data Types
• Struct with array fields

• Essence: struct

• Members may be arrays

• Decomposed during Verilate phase

• Keep dot-notation for array members

• Array of structs
• Essence: array

• First handled as array element (primitive)

• Struct decomposition deferred to Simulate phase

• Both cases required special handling in Verilator

Backup --- Summary of Support
Contributions
• Basic randomization support for All aggregated date types →

recursive traversal + foreach AST node

• Constrained randomization support for All kinds of Arrays → QF_ABV
+ chunk-based encoding

• Constrained randomization support for Structs/Unions →
flatten fields with dot notation

• Two special Nested types → Struct with array fields + Array of Structs

Backup --- The Randomization Gap in
Verilator
• Commercial simulators (e.g., QuestaSim)

• Full randomization support: primitives + aggregates(arrays, structs, unions)

• Verilator (before our work)
• Only supports primitive types randomization

• No support for arrays, structs, unions, nested aggregates

• Result: incomplete SystemVerilog support → UVM testbenches cannot run

• Our goal is to support full randomization in Verilator, moving it closer to
advanced open-source verification capabilities.

	Slide 1: Advancing Open-Source Verification: Enabling Full Randomization in Verilator
	Slide 2: Roadmap
	Slide 3: Open-Source Verification on the Rise
	Slide 4: Randomization in SystemVerilog
	Slide 5: Verilator’s Existing Randomization (Before Our Work)
	Slide 6: Our Contribution
	Slide 7: Basic Randomization for Aggregates
	Slide 8: The Challenge: AST Explosion
	Slide 9: Solution: foreach Node
	Slide 10: Constrained Randomization for Aggregates
	Slide 11: Constrained Randomization for Arrays
	Slide 12: Validation with UVM Testbenches
	Slide 13: Three UVM Testbenches
	Slide 14: Three UVM Testbenches
	Slide 15: Three UVM Testbenches
	Slide 16: Results Summary
	Slide 17: Conclusion
	Slide 18: Future Directions
	Slide 19: Questions
	Slide 20: Backup --- Associative Arrays: Handling Wide Keys
	Slide 21: Backup --- Solution: Chunk-based Encoding
	Slide 22: Backup --- Constrained Randomization for Structs
	Slide 23: Backup --- Constrained Random for Nested Aggregated Data Types
	Slide 24: Backup --- Summary of Support Contributions
	Slide 25: Backup --- The Randomization Gap in Verilator

