Advanced UVM, Multi-Interface,
Reactive Stimulus Techniques

Clifford E. Cummings', Stephen DOnoftio', Jeff Wilcox', Heath Chambers?

1 - Paradigm Works
2 - HMC Design Verification

Abstract - UVM reactive stimulus techniques allow sequences to receive feedback from a Design Under
Test (DUT) to determine what stimulus should be sent next.

At DVCon 2020, the authors presented fundamental reactive stimulus techniques using a FIFO DUT. In
the DVCon 2020 paper it was shown that a master sequence was able to react to FIFO status in order to
send appropriate FIFO command transactions (FIFO Writes and Reads). The testbench consisted of an
active agent that included a driver that sent request transactions into the FIFO and also sent response
transactions from the driver, back through the sequencer and eventually back to the sequence. The single
transaction class included both FIFO command and status fields.

This paper details advanced techniques for creating reactive stimulus. First, a
uvm_tlm analysis_fifo is added to the environment to capture transactions that are broadcast by the
monitor. These broadcast transactions are passed to the original sequence to allow the sequence to react to
the sampled outputs. Second, the same example is enhanced to run with config objects and a virtual
sequencer.

DVCon 2021

I. INTRODUCTION

It is very common for a UVM test to execute a pre-defined set of sequences regardless of the status of the Design
Under Test (DUT). An alternate approach is to execute stimulus that reacts to status from the DUT.

At DVCon 2020, the authors presented fundamental reactive stimulus techniques using UVM's built-in request-
response paths. The technique used the same sequence-sequencer-driver to send a transaction and retrieve a
response. This technique works well if all the required status can be retrieved over the same interface.

There are system-level environments that need to probe System-DUT internal signals to modify the sequences to
be driven. This paper addresses how to get a response outside of the sequencer-driver path. A simple example is
shown using auvm_tlm analysis fifo in an environment to pass the output status information back to a
sequence, which can then react to the status and modify the behavior of future transactions.

This paper will also show techniques that use the uvm_config_db to pass status back to the driving sequence.

The terms uvm_tlm analysis fifo and tlm_analysis_fifo will be used synonymously throughout
this paper.

11. REACTIVE STIMULUS REQUIREMENTS

What are the requirements for reactive stimulus? A test will start a sequence on a sequencer and the driver will
get the transactions, one at a time, from the sequencer and drive the stimulus to the DUT inputs. Now the sequence
needs to sample (retrieve) the outputs that were generated by the stimulus and send them back to the sequence.
The sequence examines the outputs and reactively determines what stimulus to drive next. So reactive stimulus
requires DUT outputs to be sampled and sent back to the sequence.

In our DVCon 2020 paper, we used the response-transaction-path from the driver, back through a sequencer
gueue terminating at the sequence, which would examine the outputs to possibly modify the next transaction that
would be sent to the DUT.

In this paper, we ignore the driver-sequencer-sequence response path and find alternate techniques to send the
sampled outputs back to the sequence.

The first technique that we demonstrateisauvm_tlm analysis_fifo placed in the environment and allow
the sequence to do blocking get-commands to retrieve the sampled outputs. This is described in the section.

Page 2 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

I11. RESPONSE TLM ANALYSIS FIFO TECHNIQUE

The first reactive stimulus example implements a simple, flat testbench as shown in Figure 1.

This example is intentionally simple to help the reader understand the basic techniques that are used to

accomplish the goal of passing a response transaction back to a sequence without passing the response through the
sequencer itself.

The key points to this technique:

(1) An extra uvm_tlm analysis fifo will be connected to the monitor in the environment and the
tlm analysis fifo handle will be stored in the uvm_config db.

(2) The monitor will broadcast sampled transactions to the tlm_analysis fifo.

(3) The base sequence will declare a handle to the tlm analysis fifo and retrieve the handle from the
uvm_config db.

(4) The sequence will do a tlm_analysis fifo.get () to retrieve the stored transaction and react to the
sampled signals.

All of these points are described in detail in this paper.

testl-.
e
iy o L=]

tlm analysis fifo

fifo cover

tb scoreboard

top
fifo agent
- sqr |
fifo seqr

fifo drv

R

< fifo if dif
. = | cico i K
7 - /
7 =
| fifol pree
-~ ra

=
~

Figure 1 - Simple example - reactive stimulus passed back to the sequence through a tlm_analysis_fifo

Page 3 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

IV. ENVIRONMENT CLASS CODE DETAILS

This technique uses a uvm_tlm analysis fifo (shortened to tlm _analysis_fifo) placed in the
environment and connected to the analysis port of the £ifo_agent. The environment class used for this simple
example is shown in Figure 2, and highlights of the environment class are described below.

In the env class:

Atlm analysis_fifo with handle name rsp_tlm_af is declared on line 8.

The rsp_tlm_af component is new () -constructed on line 20.

The rsp_tlm_af isthen stored in the uvm config dbasa

uvm_tlm analysis_ fifo# (fifo_trans) type online 21.

Finally the rsp_tlm_af is connected to the analysis port (ap) of the fifo_agent (agnt) on line
28.Theuvm_analysis_imp portonthe tlm analysis_fifoisnamed analysis_export,
so the agent connects its analysis port to the rsp_tlm af.analysis_export on line 28.

class env extends uvm_env;
‘uvm_component_utils (env)

tb_scoreboard sbd;

1

2

3

4 fifo_agent agnt;
5

6 fifo_cover cov;
7

8

uvm_tlm analysis fifo #(fifo_trans) rsp_tlm af;

9
10 function new (string name, uvm_component parent) ;
11 super.new (name, parent) ;
12 endfunction
13
14 function void build phase (uvm_phase phase) ;
15 super.build phase (phase) ;
16 agnt = fifo_agent::type_id::create("agnt", this);
17 sbd = tb_scoreboard::type id::create("sbd", this);
18 cov = fifo_cover::type id::create("cov", this);
19
20 rsp_tlm af = new("rsp_tlm af", this);
21 uvm_config db# (uvm_tlm analysis_ fifo# (fifo_trans)) ::set(
null, "", "rsp tlm af", rsp tlm af);
22 endfunction
23
24 function void connect_phase (uvm_phase phase);
25 super.connect_phase (phase) ;
26 agnt.ap.connect (sbd.axp) ;
27 agnt.ap.connect (cov.analysis_export) ;
28 agnt.ap.connect (rsp_tlm af.analysis_export);

29 endfunction
30 endclass

Figure 2 - Response TLM Analysis FIFO - env.sv

In the block diagram of Figure 1, there are three components connected to the analysis port of the agent, a
scoreboard, a coverage collectorand a tlm_analysis_fifo, butitappears thatthe tlm analysis fifois
just a dangling component that does not add value to the environment. This is not true!

First recognize thatthe tlm_analysis_fifo will queue-up the transactions that were sampled and broadcast
by the monitor. These queued transactions contain the sampled outputs from the DUT. It is these sampled signals
that will be passed to the active sequence so that the sequence can examine the outputs and perhaps react (modify)

Page 4 Advanced UVM, Multi-Interface

Reactive Stimulus Techniques

DVCon 2021

the next driven transaction. Just how that happens is described in the fifo_seq_base class description, starting
in Section VI.

V. MONITOR CLASS CODE DETAILS

The £ifo_mon class is very common monitor code and is shown in Figure 3. The monitor is sampling inputs
(shown on lines 28-32), synchronizing to the next posedge clk, using the clocking block notation @vif.cbl (shown
on line 34), then resampling the asynchronous reset to determine if the reset has become active by the end of the
cycle (shown on line 35), then sampling the outputs #1step before the @vif. cbl synchronizing clock (shown on
lines 37-41). It is the sampled outputs that are required by the reactive sequence.

The sampled inputs and outputs are reassembled into the sampled transaction and broadcast to other
components using the ap.write (tr) command shown on line 22.

This broadcast transaction will be captured by the scoreboard, the coverage collector and by the semi-dangling
uvm_tlm analysis_fifo. Each transaction broadcast by the monitor will be queued up into the semi-dangling
uvm_tlm analysis_ fifo, so now the reactive sequence needs a mechanism to get (retrieve) the queued
transactions. That will be accomplished in the fifo_seq_base class, which is described starting in Section VI.

class fifo_mon extends uvm monitor;
‘uvm_component_utils (fifo_mon)

1

2

3

4 virtual fifo if vif;

5

6 uvm_analysis_port #(fifo_trans) ap;
7

8

function new (string name, uvm_component parent) ;

9 super.new (name, parent) ;
10 endfunction
11
12 function void build phase (uvm_phase phase) ;
13 super.build phase (phase) ;
14 ap = new("ap", this);
15 endfunction
16
17 task run_phase (uvm_phase phase);
18 fifo_trans tr;
19 [/===—— e
20 forever begin
21 sample_dut (tr);
22 ap.write(tr);
23 end
24 endtask
25
26 task sample_dut (output fifo_trans tr);
27 fifo_trans t;
28 t = fifo_trans::type_id::create("t");
29 t.din = vif.din;
30 t.write = vif.write;
31 t.read = vif.read;
32 t.rst_n = vif.rst n;
33
34 @vif.cbl;
35 if (!vif.rst n) t.rst n = '0;
36
37 t.full = vif.cbl.full;
Page 5 Advanced UVM, Multi-Interface

Reactive Stimulus Techniques

DVCon 2021

38 t.af = vif.cbl.af;

39 t.empty = vif.cbl.empty;

40 t.ae = vif.cbl.ae;

41 t.dout = vif.cbl.dout;

42

43 tr = t;

44 ‘uvm_info ("sample dut", tr.convert2string(), UVM FULL)

45 endtask
46 endclass

Figure 3 - Response TLM Analysis FIFO - fifo_mon.sv

VI FIFO_SEQ_BASE CLASS CODE DETAILS

The first part of the fifo_seq base class code is described starting in this section, then the remaining
command-task portions of the fifo_seq_base class code are described in Section VII.

Understanding the £ifo_seq_base class is key to understanding thisuvm_tlm analysis fifo reactive
sequence technique. The detailed description of the £ifo_seq_base class is shown below.

A. RANDOMIZE FAIL message macro

Many of the fifo_seq base command tasks randomize the transaction data fields and it is important that the
randomization be tested to ensure that the constraints are met. Since this randomization is a common activity, we
included a RANDOMIZE FAIL macro definition to print a consistent "TRANDOMIZE FAIL" message as shown on lines
1-3 of the fifo_seq base class code in Figure 4.

Each call to tr.randomize () in the reset (), write (), read (), write_read() and do_item(),
command tasks, call the common RANDOMIZE FAIL macro.

1 “ifndef RANDOMIZE FAIL
2 “define RANDOMIZE FAIL

‘uvm_fatal ("TR_S", "fifo_seq base randomization failed")
3 ‘endif

Figure 4 - Common RANDOMIZE FAIL macro - fifo_seq_base.sv

B. Reactive Sequence Base class declarations and pre_start() method

The Reactive Sequence Base Class (abbreviated RSBC) includes the declaration ofauvm_tlm analysis_fifo
that should point to the tlm_analysis_fifo in the testbench environment. It also includes synchronization
capabilities so that the reactive sequence can drive stimulus and sample outputs to calculate the next stimulus to be
driven. How these features are implemented and why they work are described below.

The RSBC of Figure 5, includes the following declarations:
e Auvm_tlm analysis_ fifo handle declaration on line 11.
e Aneventdeclaredasrsp_tlm af eventis listed on line 12.
e Auvm_config db# (uvm_tlm analysis_ fifo(fifo_trans))::get(..) commandto
retrieve the tlm analysis_fifo handle that was stored by the environment. Shown on lines 20-
21

Page 6 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

The RSBC of Figure 5, also includes a pre_start () method, forever loop and the following synchronization
code:

e Apre start() method that executes a fork-join_ none forever loop (an autonomously
running process) shown on lines 18-28.

e The forever loop synchronizes to the output transaction by calling rsp_tlm af.get () shownon
line 24. This causes the forever loop to pause (block) until the monitor has queued up the next
sampled output transaction. So this is the first of a 3-step synchronizing action with the reactive
sequence.

e After getting a transaction, the RSBC triggers an event, the second of the synchronizing actions, by
triggering the ->rsp_tlm af event shown on line 25 in the forever loop.

e Each of the command tasks will drive a transaction and then wait for a response. The command tasks
will wait for the triggered event by pausing (blocking) the command until the triggered event is
observed using the @rsp_tlm af event. This is the third of the 3-step synchronizing actions used
by the reactive sequence.

5 class fifo_seq base extends uvm_sequence #(fifo_trans);
6 ‘uvm_object_utils(fifo_seq base)
7
8

fifo _trans tr = fifo_trans::type_id::create("tr");
fifo_trans rsp;

©

11 uvm_tlm analysis_fifo #(fifo_trans) rsp_tlm af;
12 event rsp tlm af event;

13
14 function new (string name = "fifo_seq base");
15 super.new (name) ;
16 endfunction
17
18 virtual task pre_start();
19 super.pre start();
20 if ('uvm _config db#(uvm_tlm analysis_fifo# (fifo_trans)) ::get(
null, "", "rsp tlm af", rsp_ tlm af))

21 ‘uvm_fatal (get_type name(),

"The response uvm_tlm analysis_fifo must be set!")
22 fork
23 forever begin
24 rsp_tlm af.get(rsp);
25 ->rsp_tlm af event;
26 end
27 join_none

28 endtask

Figure 5 - Response TLM Analysis FIFO - fifo_seq base.sv - Part #1

The pre_start () method in the fifo_seq base is used to start the synchornization forever loop
running before the body () task of all sequences extended from the fifo_seq_base class begin to execute.

Page 7 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

pre_start() versus pre_body()
Why use the pre_start () methodinthe fifo_seq base class? Why not use the pre_body () method?
Quoting from the UVM 1.2 Class Reference, Section 20.2:

Executing sequences via start:
A sequence’s start method has a parent_sequence argument that controls whether pre_do, mid_do,
andpost_do are called in the parent sequence. It also has a call_pre_post argument that controls whether
its pre_body and post_body methods are called. In all cases, its pre start and post start
methods are always called.

Executing sub-sequences via ‘uvm_do macros:
A sequence can also be indirectly started as a child in the body of a parent sequence. The child sequence’s
start method is called indirectly by invoking any of the “uvm_do macros. In these cases, start is called
with call pre post set to 0, preventing the started sequence’s pre body and post body methods from

being called. ...

Since there are some possible situations when pre_body () is not executed, we chose to use the pre_start ()
method, which is always executed.

VIL FIFO_SEQ_BASE CLASS COMMAND TASKS

Many of the FIFO £ifo_seq_base command tasks are very similar to, or the same as the command tasks that
were used in the DVCon 2020 Reactive Sequence paper [1]. For this paper, the command tasks were moved to the
fifo_seq baseclass, which is then extended to create fifo sequences. The inclusion of these tasks in a base class
greatly simplifies the development of the other fifo sequences.

The command descriptions will indicate if the specified tasks match the DVCon 2020 paper or if there are
important differences. In general, the DVCon 2020 paper required get_response (rsp) commands to send a
response transaction back to the reactive sequence through the sequencer. These have been replaced by
transactions that are now passing through a uvm_tlm analysis_fifo and corresponding 3-step
synchronization actions as described in Section VI.

A. reset() task

The reset () task does randomization with tr.rst_nasserted as shown in Figure 6. In the DVCon 2020 paper,
there was a get_response (rsp) command on line 35. That line has been replaced by a do-while loop (lines
35-36) that first waits forarsp_tlm af event (line 35) and only exits the do-while loop when rst_nislow
(line 36), which is the expected state of the rst_n signal during a reset operation.

30 virtual task reset (fifo_trans tr);

31 ‘uvm_info ("reset", "executing", UVM_FULL)

32 start_item(tr);

33 if (!'(tr.randomize() with {tr.rst n=='0;})) "RANDOMIZE FAIL
34 finish item(tr);

35 do Q@rsp_tlm af event;

36 while (rsp.rst_n);

37 ‘uvm_info ("reset", tr.convert2string(), UVM_FULL)

38 endtask

Figure 6 - reset() command task - fifo_seq_base.sv

Page 8 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

B. FIFO write commands

The FIFO write commands are built from a common-base write () command (shown in Figure 7) and additional
targeted write commands that test status signals and conditionally call the common-base write () command.

The common-base write() executes the start item(tr) command, followed by transaction
randomization with inline constraint that sets the tr.write bit, clears the tr.read bit and disables the
tr.rst_ninput. Thenthewrite () command completes by calling the £inish item(tr)command (lines41-
43).

In the DVCon 2020 paper, there was a get_response (rsp) command on line 44. That line has been replaced
by a do-while loop (lines 44-45) that first waits for a rsp_tlm af event (line 44) and only exits the do-
while loop when write is high (line 45), which is the expected state of the write signal during any write
operation.

40 virtual task write(fifo_trans tr);

41 start_item(tr);

42 if (!(tr.randomize() with {tr.write=='l; tr.read=='0;
tr.rst n=='1;})) 'RANDOMIZE FAIL

43 finish _item(tr);

44 do Q@rsp_tlm af event;

45 while (!'rsp.write);

46 ‘uvm_info ("FLAGS", sample_ flags(rsp), UVM_HIGH)

47 endtask

Figure 7 - FIFO write() command task - fifo_seq_base.sv

Three additional reactive write commands call this common-base write () command:

write until full(fifo_transl tr) (showninFigure 8) usesawhile ('rsp.full)loop (line51)to
continue writing until rsp.full is detected in the response. This task also prints the message "starting
write until full" with leading and trailing blank lines when the runtime +UVM VERBOSITY=HIGH
command switch is enabled. The HIGH verbosity message can be helpful during test and sequence development.

There is no difference in this command compared to the DVCon 2020 version of this command. The difference
occurs in the common-base write () command called by this command.

49 virtual task write until full(fifo_trans tr);

50 ‘uvm_info("body", "\n\nstarting write until full\n", UVM HIGH)
51 while (!'rsp.full) write(tr);

52 endtask

Figure 8 - FIFO write_until full() command task - fifo_seq_base.sv

write until AF (transl tr) (shownin Figure 9) usesawhile (!rsp.af) (while not Almost-Full) loop
(line 56) to continue writing until rsp . af is detected in the response. This task also prints the message "starting
write until AF" with leading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH command
switch is enabled.

There is no difference in this command compared to the DVCon 2020 version of this command. The difference
occurs in the common-base write () command called by this command.

Page 9 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

54 virtual task write until AF(fifo_trans tr);

55 ‘uvm_info ("body", "\n\nstarting write_until AF\n", UVM HIGH)
56 while ('rsp.af) write(tr);

57 endtask

Figure 9 - FIFO write_until_AF() command task - fifo_seq_base.sv

write until not AE(transl tr) (shown in Figure 10) uses awhile (rsp.ae) (while Almost-Empty)
loop (line 61) to continue writing while rsp. ae is still true in the response. This task also prints the message
"starting write_until not AE" with leading and trailing blank lines when the runtime
+UVM_VERBOSITY=HIGH command switch is enabled.

This command is used after resetting the FIFO to continue writing until the Almost Empty flag is cleared, which
allows data values to partially fill the FIFO buffer right after releasing reset.

There is no difference in this command compared to the DVCon 2020 version of this command. The difference
occurs in the common-base write () command called by this command.

59 virtual task write_until not AE(fifo_trans tr);

60 ‘uvm_info("body", "\n\nstarting write until not AE\n", UVM HIGH)
61 while (rsp.ae) write(tr);

62 endtask

Figure 10 - FIFO write_until not AE() command task - fifo_seq_base.sv

C. FIFO read commands

The FIFO read commands are built from a common-base read () command (shown in Figure 11) and additional
targeted read commands that test status signals and conditionally call the common-base read () command.

The common-base read () executesthe start_item(tr) command, followed by transaction randomization
with inline constraint that clears the tr.write bit, sets the tr. read bit and disables the tr.rst ninput. Then
the read () command completes by calling the finish item(tr)command (lines 65-67).

In the DVCon 2020 paper, there was a get_response (rsp) command on line 68. That line has been replaced
by a do-while loop (lines 68-69) that first waits for a rsp_tlm af event (line 68) and only exits the do-

while loop when read is high (line 69), which is the expected state of the read signal during any read operation.

64 virtual task read(fifo_trans tr);

65 start_item(tr);

66 if (!'(tr.randomize() with {tr.write=='0; tr.read=='1l;
tr.rst n=='1;})) 'RANDOMIZE FAIL

67 finish _item(tr);

68 do @rsp_tlm af event;

69 while ('rsp.read);

70 ‘uvm_info ("FLAGS", sample_flags(rsp), UVM_HIGH)

71 endtask

Figure 11 - FIFO read() command task - fifo_seq_base.sv
Two additional reactive read commands call this common-base read () command:

read until empty (transl tr) (shown in Figure 12) uses a while ('rsp.empty) loop (line 75) to
continue reading until rsp.empty is detected in the response. This task also prints the message "starting

Page 10 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

read until empty" with leading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH
command switch is enabled.

There is no difference in this command compared to the DVCon 2020 version of this command. The difference
occurs in the common-base read () command called by this command.

73 virtual task read_until_ empty(fifo_trans tr);
74 ‘uvm_info ("body", "\n\nstarting read until empty\n", UVM HIGH)
75 while (!rsp.empty) read(tr);
76 endtask
Figure 12 - FIFO read_until empty() command task - fifo_seq base.sv

read until AE (transl tr) (shown in Figure 13) uses awhile (!rsp.ae), (while not Almost-Empty),
loop (line 80) to continue reading until rsp.ae is detected in the response. This task also prints the message
"startingread until AE"withleading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH
command switch is enabled.

There is no difference in this command compared to the DVCon 2020 version of this command. The difference
occurs in the common-base read () command called by this command.

78 virtual task read_until AE(fifo_trans tr);
79 ‘uvm_info ("body", "\n\nstarting read until AE\n", UVM_HIGH)
80 while (!rsp.ae) read(tr);
81 endtask
Figure 13 - FIFO read_until AE() command task - fifo_seq_base.sv

D. FIFO write_read command

The FIFOwrite_read () command is a new command that performs simultaneous write and read operations.
This command was not included in the DVCon 2020 paper.

The write read() executesthe start_item(tr) command, followed by transaction randomization with
inline constraint that sets the tr.write bit, sets the tr.read bit and disables the tr.rst_n input. Then the

write read () command completes by calling the finish item(tr)command (lines 84-86).

This command also includes a do-while loop (lines 87-88) that first waits forarsp_tlm af event (line 87)
and only exits the do-while loop when both write and read control signals are high (line 88).

83 virtual task write read(fifo_trans tr);

84 start_item(tr);

85 if (!(tr.randomize() with {tr.write=='l, tr.read=='1l;
tr.rst_n=='1;})) "RANDOMIZE FAIL

86 finish _item(tr);

87 do Q@rsp_tlm af event;

88 while (rsp.write && rsp.read);

89 ‘uvm_info ("FLAGS", sample_flags(rsp), UVM_HIGH)

90 endtask

Figure 14 - write_read() command task - fifo_seq_base.sv

E. do_item() task

There is a general-purpose testing task called do_item(). The do_item() task does randomization with
tr.rst_n disabled (line 95), as shown in Figure 15. The randomly generated write and read signals are
concatenated and tested in a case statement that will execute idle (do nothing), read (), write () and

Page 11 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

write read () commands (lines 96-101). Thedo_item() task also takes a cnt input to do repeated, randomly
generated commands. If the cnt input is not specified when do_item () is called, the default cnt value is set to
1 (line 92).

This command is a significant modification of the DVCon 2020 do_item () command.

92 virtual task do_item (fifo_trans tr, int cnt=1);

93 ‘uvm_info("do_item", $sformatf (
"\n\nstarting do_item (loop cnt=%0d)\n", cnt), UVM HIGH)

94 repeat (cnt) begin

95 if (!(tr.randomize() with {tr.rst n=='1l;})) "RANDOMIZE FAIL
96 case ({tr.write, tr.read})

97 2'b00: ; // IDLE

98 2'b01: read(tr); // FIFO READ

99 2'bl0: write(tr); // FIFO WRITE
100 2'bll: write_read(tr); // FIFO WRITE & READ

101 endcase

102 end

103 ‘uvm_info("do_item", tr.convert2string(), UVM_FULL)

104 endtask

Figure 15 - do_item() command task - fifo_seq_base.sv
F. sample flags() method

The read (), write () and write_read () commands, which are also called by the other write-variation,
read-variation, and the do_item() commands, call the sample flags () method shown in Figure 16 to
display the full / af / ae / empty flags when run-time simulation verbosity is increased to UVM_HIGH.

106 virtual function string sample_ flags(fifo_trans rsp);
107 return ($sformatf ("full=%b / af=%b / ae=%b / empty=%b",
108 rsp.full, rsp.af, rsp.ae, rsp.empty));
109 endfunction

Figure 16 - sample_flags() function - fifo_seq_base.sv

Printing these status flags is useful when debugging the FIFO design or testbench.

Page 12 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

VIII. FIFO_SEQUENCE

For this paper, the command tasks were moved to the sequence base class and all fifo sequences, including this
fifo_sequence class, extend the fifo_seq base class. This greatly simplifies the development of fifo
sequences. The body () task of the fifo_sequence is shown below in Figure 17 and the sequence executes the
following stimulus actions:

Line 9-
Line 10 -
Line 11 -
Line 12 -
Line 13 -
Line 14 -
Line 15 -
Line 16 -
Line 17 -

Line 18 -
Line 19 -
Line 20 -
Line 21 -

Line 22 -
Line 23 -

1
2
3
4
5
6
7
8

23
24

The stimulus first resets the FIFO for two clock cycles.

Then completely fills the FIFO.

Later, after the FIFO is detected to be full, the stimulus reads the FIFO until it is empty.

The FIFO is written until it is past the Almost Empty mark.

Then 6 random read/write commands are issued.

The FIFO is then written until it is Almost Full.

Then 10 random read/write commands are issued.

The FIFO is written until full.

An attempt is made to randomly do 4-8 additional write commands, which should not change anything
in the FIFO.

Read until the FIFO is Almost Empty.

Write until the FIFO is full.

Read until the FIFO is empty.

An attempt is made to randomly do 5-9 additional read commands, which should not change anything
in the FIFO.

Write until the FIFO is Almost Full.

Do 100 random read/write commands. And finish this sequence.

class fifo_sequence extends fifo_seq base;

‘uvm_object utils(fifo_sequence)

function new (string name = "fifo_sequence");
super.new (name) ;
endfunction

task body;
repeat (2) reset(tr);
write until full (tr);
read_until empty (tr);
write until not AE(tr);
do_item(tr, 6);
write until AF(tr);
do_item(tr, 10);
write until full (tr);
repeat ($urandom range(4,8)) write(tr);
read until AE(tr);
write until full (tr);
read until empty (tr);
repeat ($urandom_range(5,9)) read(tr);
write until AF(tr);
do_item(tr, 100);

endtask

25 endclass

Page 13

Figure 17 - Response TLM Analysis FIFO - fifo_seq_base.sv

Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

IX. MULTI-INTERFACE REACTIVE STIMULUS

The simple reactive stimulus environment using a uvm_tlm_analysis_fifo can be easily extended to use multiple
agents connected to a DUT.

The second agent could be an active or passive agent that uses a different transaction that samples DUT status
signals, which might not be present in the first transaction.

Just as was shown in FIG1, the second agent could also be connected to a uvm_tlm_analysis_fifo and the common
sequence base class could declare a handle to the second uvm_tIm_analysis_fifo and retrieve that handle from the
uvm_config_db. Now the reactive sequence could get sampled transactions from different interface through a
second uvm_tlm_analysis_fifo and use signals from the second transaction type to determine how to modify the
stimulus being driven through the primary agent.

Using this technique, a sequence could query any number of different status signals from multiple interfaces, agents,
and transaction types how to modify the stimulus being driven through the primary agent.

X. SUMMARY & CONCLUSIONS

The simple reactive stimulus example used a uvm_tlm analysis_fifo connected to the monitor in the
environment. This tlm analysis_fifo appeared to be a dangling component but it was capturing the
broadcast transactions, with sampled outputs, from the monitor.

The Reactive Sequence Base Class (RSBC) included:

— Auvm_tlm analysis_fifo handle declaration.

— Aneventdeclaredas rsp_tlm af event.

— Auvm_config db::get command to getthe tlm analysis_fifo handle from the env.
— pre_start () method that executes a fork-join none forever loop.

— forever loop that synchronizes to output transactions by calling rsp_tlm af.get().

— After getting a transaction, RSBC triggers the ->rsp_tlm af event.

— Command tasks that are called by extended sequences.

— ARANDOMIZE FAIL macro for common randomization error reporting.

— Command tasks drive stimulus.

— Command tasks wait for output transactions by waiting for the @rsp_tlm af event.
— Command tasks examine outputs to re-calculate the next input stimulus.

This technique can be extended to multiple interface with multiple agents and multiple transaction types, each of
which can be examined by a reactive stimulus base sequence.

An additional section (Section XI) follows this Summary Section showing some of the code that we used in a more
advanced version of the simple test that we have previously described in this paper. Sharing this code for the more
advanced features might help engineers to look at different way to use the reactive sequence technique described
in this paper.

REFERENCES

[1] Clifford E. Cummings, Stephen Donofrio, Heath Chambers, "UVM Reactive Stimulus Techniques,” DVCon 2020, San Jose, CA. Also

available at www.sunburst-design.com/papers
[2] Universal Verification Methodology (UVM) 1.2 Class Reference - June 2014

Page 14 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

XI. MORE ADVANCED EXAMPLE USING TLM_ANALYSIS_FIFO

In the more advanced example shown in Figure 18, the environment includes an env_cfg and a virtual
sequencer. The fifo_agent is now part of a UVM Verification Component (UVC), and the agent also has a
fifo cfgqg.

The agent has a fifo_seq _main base class and a fifo_sequence, which are controlled through the virtual
sequencer using a virtual sequence base class and virtual sequence.

rsp tlm af

tlm analysis fifo

. env_cfg

fifo cfg fifo cfgl
vsequencer - =

fifo seqgr fsgr

fifo cover

scoreboard

fifo cfg

uvm_active passive enum
is active

top

i fifo if

_____ ’
/

K fifol

Figure 18 - Advanced example - reactive stimulus passed back to the sequence through a tlm_analysis_fifo
The most significant differences using this advanced version of the example are described below.

The advanced example environment now declares and uses a vsequencer, anenv_cfganda fifo_cfg.

1 class env extends uvm_env;
2 ‘uvm_component_utils (env)
3
4 fifo_agent £ _agnt;
5 tb_scoreboard sbd;
6 fifo_cover cov;
7 vsequencer v_sqr;
8
9 env_cfg cfg;
10 fifo cfg f cfg;
11
12 uvm_tlm analysis_fifo # (fifo_trans) rsp_ tlm af;
13
14 function new (string name, uvm_component parent) ;
15 super.new (name, parent) ;
16 endfunction
17
18 function void build phase (uvm_phase phase) ;
19 super.build phase (phase) ;
20 f agnt = fifo_agent::type_id::create("f_agnt", this);
21 sbd = tb_scoreboard::type id::create("sbd", this) ;
Page 15 Advanced UVM, Multi-Interface

Reactive Stimulus Techniques

DVCon 2021

22 cov = fifo_cover::type_id::create("cov", this) ;
23 v_sqr = vsequencer: :type_id::create("v_sqr", this);
24

25 cfg = env_cfg::type id::create("cfg");

26

27 uvm_config db# (env_cfg) : :set(this, "v_sqr", "cfg", cfg);
28 cfg.fifo_cfgl.is_active = UVM_ACTIVE;

29

30 uvm_config_db# (fifo_cfg) ::set(this, "f _agnt", "cfg", cfg.fifo_cfgl);
31

32 rsp_tlm af = new("rsp_tlm af", this);

33 uvm_config db# (uvm_tlm analysis_ fifo# (fifo_trans)) ::set(

null, "", "rsp_ tlm af", rsp_ tlm af);
34 endfunction

35

36 function void connect_phase (uvm_phase phase);

37 super.connect_phase (phase) ;

38 f agnt.ap.connect(sbd.axp);

39 f _agnt.ap.connect(cov.analysis_export) ;

40 f agnt.ap.connect(rsp_tlm _af.analysis_export) ;
41

42 v_sqr.fsqr = £_agnt.sqr;

43 endfunction
44 endclass

Figure 19 - Advanced Example - Environment

The advanced example env_cfgnow declaresa fifo_cfghandle and whenthe env_cfgnew () constructor
is called, it will also factory-create the £ifo_c£g. This means that both configs are created back-to-back when the
env_cfgqis factory created.

1 class env_cfg extends uvm object;

2 ‘uvm_object_utils(env_cfgq)

3

4 fifo_cfg fifo_cfgl;

5

6 function new(string name="env_cfg");

7 super.new (name) ;

8 fifo cfgl = fifo cfg::type_id::create("fifo_cfgl");
9 endfunction

10 endclassclass

Figure 20 - Advanced Example - env_cfg

The advanced example vsequencer is a typical virtual sequencer that is little more than a wrapper for
subsequencer handles. This vsequencer also has a handle that points back to the env_c£g, although it is not
being used in this example.

class vsequencer extends uvm_sequencer;
‘uvm_component utils (vsequencer)

env_cfg cfg;
fifo_seqr fsqr;

function new(string name, uvm_component parent) ;

1
2
3
4
5
6
7
8
9 super.new (name, parent) ;

Page 16 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

10 endfunction
11
12 function void build phase (uvm_phase phase) ;
13 super.build phase (phase) ;
14
15 if ('uvm_config db#(env_cfg)::get(this, "", "cfg", cfqg))
16 ‘uvm_fatal ("NOCFG",
{" (env_cfg configuration object required for: ",get_full name(),".cfg"});
17 endfunction

18 endclass

Figure 21 - Advanced Example - vsequencer

The advanced example £ifo_agent is pretty typical agent code, but it does include a £ifo_c£g config object
and retrieves its is_active flag from this fifo_cfg.

class fifo_agent extends uvm_agent;
‘uvm_component_utils(fifo_agent)

uvm_analysis_port #(fifo_trans) ap;
fifo_drv drv;
fifo_mon mon;

9 fifo_seqr sqr;

1
2
3
4 virtual fifo if vif;
5
6
7
8

10
11 fifo _cfg cfg;
12
13 uvm_active passive_enum is_active;
14
15 function new (string name, uvm_component parent) ;
16 super.new (name, parent) ;
17 endfunction
18
19 virtual function void build phase (uvm_phase phase) ;
20 super.build phase (phase) ;
21
22 if ('uvm_config db#(fifo_cfg)::get(this, "", "cfg", cfqg))
23 ‘uvm_fatal ("NOCFG",
{"fifo_cfg configuration object required for: ", get_full name(),".cfg"});
24
25 is_active = cfg.is_active;
26
27 if (is_active == UVM_ACTIVE) begin
28 drv = fifo_drv::type_id::create("drv", this);
29 sqr = fifo_seqr::type_id::create("sqr", this);
30 end
31 mon = fifo mon::type_id::create("mon", this);
32 ap = new("ap", this);
33 get_vif();
34 endfunction
35
36 virtual function void connect_phase (uvm_phase phase);
37 super.connect_phase (phase) ;
38 if (is_active == UVM _ACTIVE) begin
39 drv.seq_item port.connect(sqr.seq_item_ export);
40 drv.vif = vif;
41 end
Page 17 Advanced UVM, Multi-Interface

Reactive Stimulus Techniques

DVCon 2021

42 mon.ap.connect (ap) ;

43 mon.vif = vif;

44 endfunction

45

46 function void get_vif;

47 if ('uvm_config db#(virtual fifo if)::get(this,"","vif",vif))
48 ‘uvm_fatal ("NOVIF", {"virtual interface must be set for:",
49 get_full name(),".vif"});

50 endfunction
51 endclass

Figure 22 - Advanced Example - fifo_agent

The advanced example £ifo_c£g class has storage for the is_active flag used by the fifo_agent.

1 class fifo_cfg extends uvm object;

2 ‘uvm_object_utils(fifo_cfg)

3

4 uvm_active passive_enum is_active;

5

6 function new(string name="fifo_ cfg");
7 super.new (name) ;

8 endfunction

9 endclass

Figure 23 - Advanced Example - fifo_cfg

The advanced example vseq_base class executes very common actions:
e Callsthe "uvm_declare p_ sequencer macro.
e Declaresa fifo_seqr handle named £sqr.
e Copiesthe p_sequencer. £sqr handle to the local £sqr handle.

1 class vseq base extends uvm_sequence;

2 ‘uvm_object_utils(vseq_base)

3

4 ‘uvm_declare_p_ sequencer (vsequencer)

5

6 fifo_seqr fsqr;

7

8 function new (string name = "vseq base");
9 super.new (name) ;
10 endfunction
11
12 virtual task body () ;
13 ‘uvm_info ("VSEQ BASE DBG","vseq base body() starting", UVM_FULL)
14 fsqr = p_sequencer.fsqr;

15 endtask
16 endclass

Figure 24 - Advanced Example - Virtual Sequence Base class vseq_base

The advanced example vseql virtual sequence class is just setup to extend the vseq_base class and start the
virtual sequence on the virtual sequencer.

1 class vseql extends vseq base;
2 ‘uvm_object_utils(vseql)
3

Page 18 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

DVCon 2021

4 function new (string name = "vseql");

5 super.new (name) ;

6 endfunction

7

8 virtual task body() ;

9 fifo_sequencel vseq = fifo_sequencel::type_ id::create("vseq");
10 ‘uvm_info ("VSEQl DBG","vseql body() starting", UVM_FULL)

11 super.body () ;

12 vseq.start (fsqr) ;

13 ‘uvm_info ("VSEQl DBG","vseql body () complete", UVM FULL)

14 endtask
15 endclass

Figure 25 - Advanced Example - Virtual Sequence vseql

For the advanced example, all of the fifo_agent and subcomponents were put into a separate UVM
Verification Component (UVC) directory and package. We were able to run this version of the example with the same
results and the simple example.

Page 19 Advanced UVM, Multi-Interface
Reactive Stimulus Techniques

