Advanced UCIe-based Chiplets verification from IP to SoC Anunay Bajaj Moshik Rubin

March 2024

Agenda

- Chiplets designs trends and examples
- UCIe based Chiplets Design topologies => verification challenges

- Verification approaches and examples from IP to SoC
- Q & A

Factors leading to Chiplet Adoption

- Increase in Die size for CPUs/GPUs
- Expensive to fabricate Die with 7nm or lower nodes
- Improve Time-to-solution (Die reuse)
- Need to Lower manufacturing costs by purchasing known-good die (KGD)
- Room for Customization needed (bespoke solutions)
- Need to Scale innovation (manufacturing and process locked IPs)

Source:

Source:

Chiplet Industry Applications

Simplified UCIe based Design Topologies

UCIe in Action - Example Chiplet Design

- Explosion of Design Topologies - Several Unit Levels in different combinations
- Multiprotocol Verification
 - PCI Express using UCIe as the Transport Layer
 - CXL using UCIe as the Transport Layer
- System Level Implications -End-to-end Data Integrity -Latency Calculation or Turn Around Time (TAT)

Verification Areas – Leverage Multiple Technologies

Verification Areas – Leverage Multiple Technologies

Verification Areas – Leverage Multiple Technologies

Glossary:

- Formal VIP: Set of formal assertions
- Simulation VIP: UVM based VIP (BFM, Monitor, seq library)

- Accelerated VIP: Emulation ready VIP
- System VIP: SoC level tools, integrated with VIP/AVIP

UCIe IP level Verification

UCle Architecture

Various IP Verification Topologies

- Checks FDI Flits inbound and outbound to Adapter Layer DUT
- Checks RDI Flits inbound and outbound to Adapter Layer DUT
- Multi Protocol and Multi Stack capable
- D2D FDI Interface Coverage
- D2D RDI Interface Coverage

- Checks Serial Mainband and Sideband flow of PHY DUT
- PHY Serial/UCIe Link Coverage

- Checks RDI Flits inbound and outbound to PHY DUT
- Checks Serial Mainband and Sideband flow of PHY DUT
- PHY RDI Interface Coverage
- PHY Serial/ UCle Link Coverage

- Checks FDI Flits inbound and outbound to Adapter Layer DUT
- Multi Protocol and Multi Stack capable

cādence

D2D FDI Interface Coverage

•

Unit Level - Adapter & Protocol Layer Standalone IP Verification

Verification Focus

- Fast Simulation/Emulation as no Physical Layer involved
- Bypass Link Training & Setup controls
- Die-to-Die Adapter Correctness
- Protocol Layer Correctness
- Stress Testing with Bulk Reads/Writes
- End-to-end Transaction performance

Unit Level - Physical Layer Standalone IP Verification

Verification Focus

- Detailed Physical Layer Verification
- Handshake with local RDI and remote link partner
- Complexities include Packaging/ Multimodule/ LTSM training and failures/ Reversal/ Retry
- Physical Layer Sideband and Mainband transactions
- RDI throttling

Legend

Verification Components or Modules DUT RTL

UCIe Sub-System level Verification

Subsystem Level Verification– With Coherent & Non-Coherent Protocols

Verification Focus

- End-to-end Request & Response correctness
- Protocol Translation Monitoring at Interface boundaries
- Layer-wise Monitors for step-by-step checks
- Handshake with local RDI and remote link partner

Legend Verification Components or Modules DUT RTL

Interface connections

Add Pureview slide

Instantiate Full Stack US agent and Protocol+D2D+Physical (acting as Full Stack DS agent) in the testbench module.

Verisium Smart Log

SMARTLOG	×	
= • = @	6 FROM: 0 (ns)	TO: 32,428 (ns)
← → Keep	 Message 	Message searching & sorting
• © • 1	☆ 및 Time (ns)	Message
• • •	29,384	UVM_INFO - ++ Generating Protocol mainband packet ++
۵ 🔴 🖪	29,384	UVM_INFO - ++ Generating Protocol mainband packet ++ Run time Verbosity chang
	Bookmark mess	vm_test_top.sve.env.protoDsAgent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue
		vm_test_top.sve.env.protoDsAgent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
	29,384.5	*Denali* <uvm_test_top.sve.env.protodsagent>@29384500 ps : MBTX: Mainband packet detected in TxUser queue</uvm_test_top.sve.env.protodsagent>
•	29,428	UVM_INFO - End Transfer @ 29428000.00 ps
۰ ا	32,428	UVM_INFO - 'run' phase is ready to proceed to the 'extract' phase
۱	32,428	UVM Report catcher Summary
۵	32, 428	Number of demoted UVM_FATAL reports : 0
۵	32,428	Number of demoted UVM_ERROR reports : 0
۱ 🔴 😢	32,428	Number of demoted UVM_WARNING reports: 0
۱ 🔴 😢	32,428	Number of caught UVM_FATAL reports : 0
🖲 🔴 🖪	32,428	Number of caught UVM_ERROR reports : 0

Debugging UCIe data flow

UCIE Packets view

UCIe System level Verification

System Level- Chiplet Performance Concerns

- Understanding and debugging bandwidth throttling requires visualization of "throttle" proxies -Outstanding Transaction (OT) count is the standard measure
- Localization of cache lines can have a huge impact on latency and reduce die-to-die traffic (which itself can be a throttle)
- Data packet assembly and decomposition across the Chiplet Interconnects can add significant overhead

22

Solution- Complete System Performance & Integrity

Identifying performance bottlenecks

Summary

UCle based Chiplets verification has multiple levels and challenges

- Unit-level detailed verification with multi, higher-level protocols
- Early verification of sub-system before full design availability
- System level cache coherency and performance measurement and debugging

Each verification challenge requires a tailored solution strategy

- IP level requires flexible VIP with support of multiple topologies/interfaces.
- Sub-system level requires emulation-friendly tb with cache coherency-aware scoreboard.
- System level requires stimulus that can be injected through the core/VIP/AVIP.

Technology and tools are available now!

- Simulation and Emulation ready Verification IP
- Multi-engine performance Analyzer to identify Bottlenecks, Latency and bandwidth.
- Die-to-Die Scoreboard for cache and data integrity.
- Portable Stimulus tests that can be run on multiple engines and topologies.

cādence

© 2024 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI specifications are registered trademarks or trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks of PCI-SIG. All other trademarks are the property of their respective owners.