(2022

DESIGN AND VERIFICATION ™

DV OIN

CONFERENCE AND EXHIBITION

Adaptive Test Generation for Fast
Functional Coverage Closure

Azade Nazi, Qijing Huang, Hamid Shojaei, Hodjat
Asghari Esfeden, Azalia Mirhoseini, Richard Ho

'.4'\‘ .

4 L

i | " v) .

R =y ' 1T

3 ‘ .

‘e O".-.J P N
s

SYSTEMS INITIATIVE

Outline

Main Goal in Google
Improve chip design flow

Challenges in standard Constraint Random Verification flow

Introduce Smart Constraint Solver
Propose CDG4CDG
Scalability

Experimental Results
* Achieved up to 21.7x speedup in a fully automated flow.

Conclusion

SYSTEMS INITIATIVE

Goal
Develop scalable, and generalizable machine learning

Using Al/ML to Accelerate Design Flows
framework with rapid evaluation and turn-around

time to shorten the chip design process. @@@

Cloud ML Engines Design More Efficient Accelerator

Research Direction
e Apply ML into four different stages of chip design

Verification
static, dynamig

44.0%

Verification
56.0%

=a
Ept
o
3. 0
:-I
Q

Architecture

Source: Wilson Research Group/Mentor

SYSTEMS INITIATIVE

Standard Constraint Random Verification Flow

e \Verification of complex designs starts with Verification Plan
the definition of a verification plan

Testbench
e \Verification engineers create a DUV |
testbench to simulate the designs at Generator and Driver Monitor
: Random Functional
the code level Constraints Variables | L(M
e Checker verifies the design output
. , Simulator |
against the modeled output | ¥
Constraint | Test i : .
. % > = u = | Simulation
e Test Stimuli is generated from the Solver Stimuli
feasible solutions of the constraint 1 ;
solver “ Coverage Coverage
Reports Analysis Tool

SYSTEMS INITIATIVE

Constraints and Coverage

rand bit [1:0] State;
constraint con_State {

e Distribution Constraint

State dist ({ Verification Plan
idle := 10,
start := 10,
read := 10,
write := 10 Testbench
b § | DUV |
* Legalization Constraint . .
Generator and Driver Monitor
constraint c { _ Random Functional
Il inclusive Constraints \anablas Coverage
src_port inside { [8'h0:8'hA],8'h14,8'h18 }; |
Il exclusive
I (des_port inside { [8'h4:8'hFF] }); ! Simulator |
} _ .
Cosnsl‘"a'”t - Test - | Simulation
 Ordering Constraint i S
constraint frame_sizes {
solve zero before data.size; o
zero -> data.size == 0; i Coverage
data.size inside {[0:10]};} Reports

SYSTEMS INITIATIVE

Design Sign-off: Coverage Closure

e CRV mostly relies on randomness

e At everysimulation cycle the seed is changed

e Constraints are defined by DV engineer once and updating them

_ DV Engineer

Set of variables

Set of domains

for better coverage is nontrivial

Set of
constraints

\

<Constraint Solver>—< Simulation H Coverage /

For Complex designs
over ~1 year
Repeat each run >1M cycles Y

N

SYSTEMS INITIATIVE

13 class packet;

14
15

Smart Constraint Solver

18
19
20
CSP :
. —J 23
Tests || s
L 26
Set of N
o e | K """""
weights : 29
BN I 30
I 31
Set of variables E =
L
: i
Set of domains <Constraint Solver
Set of constraints !
» ﬁ\/ﬂ/‘\/ :
Set of Nl . ¢_ _________
weights

D))

// The following properties are visible to the DUT
rand bit [7:0] destinationAddress;
rand bit [7:0] sourcefddress;

bit [7:0] packetData[$];

// The following properties are used to influence
// packet generation, error conditions, etc.

rand bit [31:0] packetld;

rand bit [7:0] packetSize;

rand bit mopError;

rand bit [7:0] mopErrorLocation;

// Constraints on packet generation
constraint packetSize c { packetSize != 0 ;

packetSize dist {[1:
[4: &
[48:19
[192:25

3]:76,
1]:7%,
2 B g8
2 ZY 3)

constraint destinationAddress_c { destinationAddress inside {0,1,2,3};}

constraint mopErrorLocation_c¢ { mopErrorLocation
constraint external_c;

< packetSize-1; }

Simulation

Coverage

Feedback

(2022

DESIGN AND VERIFICATION™

SYSTEMS INITIATIVE

13 class packet;
14
. 15 // The following properties are visible to the DUT
16 rand bit [7:0] destinationAddress;
Smart Constraint Solver & i s
18 bit [7:8] packetData[$];
19
20 // The following properties are used to influence
21 // packet generation, error conditions, etc.
C:ESFD , 22 rand bit [31:0] packetld;
: —LJ 23 rand bit [7:0] packetSize;
24 rand bit mopError;
11355t55 25 rand bit [7:0] mopErrorLocation;
L — 26
E;EBt ()f 27 // Constraints on packet generation
] gy i 28 constraint packetSize_c { packetSize != 0 ;
We|ghts ‘IF 29 packetSize dist {[1: 3]:/6,
BN . 30 [4: 47]:/3,
I 31 [48:191]:/2,
. 1 32 [192:255]:7% };)
Set of variables I 33 constraint destinationfAddress c { destinationAddress inside {0,1,2,3};}
: 34 constraint mopErrorLocation_c { mopErrorLocation < packetSize-1; }
35 constraint external_c;

Complexity:
PacketSize: [1,255], Weight: [1, 10],

The search space for possible distribution constraints: 102252

eeabpac

(accellera)

SYSTEMS INITIATIVE

Related Work: Coverage-directed Test Generation

* Model-driven
 Converting the design into an abstract finite-state machine
* Mainly suffers from the need to create and maintain an accurate model

e Data-driven

 Models the relationships between coverage and stimuli directives from the
simulation feedback

* Use observations to build and train a model that captures the casualty
between input variables and coverage

Limitations:
* Rely on a significant amount of domain knowledge

* Require a considerable number of simulations to obtain enough training data

* Very challenging for modern large-scale designs as data collection and model

training may take several months.

SYSTEMS INITIATIVE

CDG4CDG: Coverage Dependency Graph for Coverage
Driven Test Generation

Co e : S
e (Coverage Dependency Graph Bepecdancy FII Lve”“‘:a“Tf'i“_
- Graph (CDG |
(CDG) Extraction ! f
: Testbench
: : Weight
® Build Bayesian Network [| DUV]
automatical Iy 1 Generator and Driver Monitor
Distribution 8 | Constraints Random Functional
o Flnd COnditiOnal proba b|||t|es Constraints P Variables Coverage
e Generate/update constraints Simulator |
S : Constraint : :
by statistical inference on CDG Solver b Simulation

Update Coverage Statistics =
Coverage Coverage
Reports Analysis Tool

SYSTEMS INITIATIVE

CDG: Model Functional Coverage as a Bayesian
Network

 We use design parser to find the random variables covergroups
correlation of the cover items and the @ O~ O

random variables : \
* For each coverpoint we query the parser coverpoints

until we reach a random variable é@ é
* For each coverbin, the coveritems are coverbins / \ X
the values of the random variables
required to be sampled in a test et T /\\ %
0000 - ¢ 0 00

S S INITIATIVE

CDG Example

Random variable Covergroup | covergroup cg_ memory @(posedge Clock):
state_cp: coverpoint State {
cg_memory bins valid_states = { Idle, start, read, write};

bins valid_trans = (Idle => start => read => |dle),
bins reset_trans = (read, write, start => Idle);

Coverpoint : }
C) endgroup

==

start

Coverbins

valid_states

read

SYSTEMS INITIATIVE

end-to-end algorithm

1: Query testbench modules and automatically extract the CDG graph

2: while ! Coverage Closure do

3: Run simulation and get the coverage feedback

4: Estimate conditional probabilities for nodes in CDG graph

3; Update CDG graph by pruning cover items that are covered

6 for coverage holes x update distribution constraints by solving
OvrLe = argmaxg P(x;0)

7: end while

t-1

random variables covergroups

coverpoints \
N

cover items /\\ . |
0000 ..

INITIATIVE

end-to-end algorithm

Query testbench modules and automatically extract the CDG graph

b
2: while ! Coverage Closure do
3 Run simulation and get the coverage feedback
4: Estimate conditional probabilities for nodes in CDG graph Scalability?
5 Update CDG graph by pruning cover items that are covered
6 for coverage holes x update distribution constraints by solving
OvLe = argmaxe P(x;0)
7: end while

t-1

random variables covergroups

coverpoints \
N

cover items /\\ —~ |
0000 ..

INITIATIVE

Our Approach to Handle Scalability Challenges

random variables

Challenge 1: Exact inference in Bayes nets is NP-hard [1]
* Our CDG structure is polytree, thus belief propagation

performs inference efficiently linear in number of nodes [2]
 We use simulation feedback to calculate probability of
hit/no hit for each coverpoint

 We leverage the polytree property since there is only one

path from a coverpoint to the variables 0000.0 6 ®o°

 We iteratively update distribution constraints by

aggregation of no hit counts

[1] Cooper, G. F., 1990. The computational complexity of probabilistic inference using Bayesian belief networks.
[2] Bayesian Artificial Intelligence (2004), Kevin B. Korb and Ann E. Nicholson, Chapman and Hall, CRC Press

SYSTEMS INITIATIVE

Our Approach to Handle Scalability Challenges

Challenge 2: Modern large-scale designhs may have over random Var'ab'eS

thousands of variables and adding constraints over each variable w
significantly hampers practicality of the constraint solver
Solution

 We pick top-k variables from CDG graph 0“5
 Rank variables by the number of coverpoints related to them

from its induced subgraph
 Define distribution over range of values

S S INITIATIVE

Evaluation Setup

Baselines

. default_dist
Existing distribution (if any)
random_dist
- Change the distribution constraints randomly

Designs
Industrial Accelerator SML: TPU block

- TPU block consists of multiple large and complex designs
- Considered three designs in this TPU block (SML1-3)

RISCV-Ibex
Experimental Results:

Evaluate CDG4CDG
. Theoretical bound on baseline + Empirical result
Impact on code coverage

SYSTEMS INITIATIVE

TPU: SML1

#coverpoints | #random variables | Coverage closure #bundles Speed up

SML1 371 5 ~ 101(222) 66 vs 340 528 vs ~3k =5.15x

wn
100- [=
) § 351 —— default _dist
2 95. 230- CDG4CDG
c 3 25 —— rand_dist
- -
g_) ':I—:ZO‘
) B]
o 85 S
= ——default_dist 45 10-
3 80- CDG4CDG .
O _ 2 5
------------- rand_dist =
B/t =
0 10 20 30 40 50 60 70 80 90 = 5 15 25 35 45 55 65 75 85 95
Iteration Ilteration

SYSTEMS INITIATIVE

TPU: SML 2

#coverpoints | #random variables | Coverage closure #bundles Speed up
SML 2 574 7, ~10%(2"43) 23 vs 500+ 184 vs 4k >21.7x
2
100+ € 50 .
) — default dist
o & CDGA4CDG
g 95 < 40
= o —— rand_dist
Q O —
£ 90 + 301
X P
) O i
3 89 = 20
) ——default_dist = —~————
3 801 cDG4cDG | @ 107
O . s
.............. rand_d|st E
n 1 O O B I e e) e s e e
0O 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
aration Ilteration

acce/le,’a DESIGN AND VERIFICATION™
ooooooooooooooooooooo

SYSTEMS INITIATIVE

TPU: SML 3

#coverpoints | #random variables | Coverage closure #bundles Speed up
SML 3 1129 12, ~107(2"65) 66 vs 500+ 504 vs 4k >7.9x
wn
i O R R B o e e S 1001 — difault_dist
g 95 e - - CDGA4CDG
@ 3 —— rand_dist
= 90 -
g j_: 60 -
@ o
= 851 = 40-
7 ——default_dist S
3 30 CDG4CDG o 201
O o :
.............. rand_dlst E A |
g i = Ot —r— 1T [17T
5 15 25 35 45 55 65 75 85 95

0O 10 20 30 40 50 60 70 80 90
lteration Iteration

SYSTEMS INITIATIVE

Bound on default dist Baseline

For the baseline, the lower bound of the expected number of
simulation runs to cover all m coveritems is O(m Iog m) while the
upper bound is infinite |

EORRN I \ \

@ ol)]
4 (5] {4 10 12

The best scenario is when the dlstrlbutlon constraint is uniform and
coveritems are egually likely to be covered. In this case, the
problem is reduced to an instance of well known Coupon collector’s
problem

SYSTEMS INITIATIVE

Empirical results

Most of the coveritems in RISCV-lbex are uniformly specified among all
random variable values

100

951

901

851

v
(@)
©
-—
c
)
O
—
CI)
(a8
@
o
©
—
v
>
o
O

——default_dist

CDG4CDG
------------- rand_dist
15 - - - - ; -
30 40 50 60 70 80 90 100
Iteration

SYSTEMS INITIATIVE

O N
o O
o O

N W B
o
o

Number of Not Hit Coverpoints
o
o

o
o

Oy}
o O
o O

—— default _dist

—— rand_dist

CDG4CDG

pg
o

50

60

70
Iteration

80

90

Impact of Functional Coverage on Code Coverage

Though CDG4CDG is designed to improve the functional coverage, it
alters the variable values and the execution paths of the simulation,
and subsequently may affect code coverage as well.

Code coverage on the RISCV-Ibex

o o
i S
o

(o)}
~
I

o
iy
o

o
9
o

Code Coverage Percentage
2
N

—— rand_dist
CDG4CDG

o
N
o

0O 10 20 30 40 50 60 70 80 90 100
Iteration

S INITIATIVE

Conclusion

- We introduced an automated test generation framework,
CDGA4CDG, to accelerate the functional coverage convergence

- CDG4CDG achieves consistent coverage improvement

- Reaches the coverage closure significantly faster with up to 21.7x
speedup in a fully automated flow

25
¢ SML1 = SML2 SML3

20

90 92 94 96 98 100
Total Coverage

SYSTEMS INITIATIVE

Questions

azade@google.com
hamids@google.com

SYSTEMS INITIATIVE

