
Adaptive Test Generation for Fast
Functional Coverage Closure

Azade Nazi, Qijing Huang, Hamid Shojaei, Hodjat
Asghari Esfeden, Azalia Mirhoseini, Richard Ho

Outline
• Main Goal in Google

• Improve chip design flow

• Challenges in standard Constraint Random Verification flow

• Introduce Smart Constraint Solver
• Propose CDG4CDG
• Scalability

• Experimental Results
• Achieved up to 21.7× speedup in a fully automated flow.

• Conclusion

Using AI/ML to Accelerate Design Flows

3

Cloud ML Engines Design More Efficient Accelerator

De
si

gn

Sp
ac

e

Architecture

Floor
planning

Verification
static, dynamic

Goal
Develop scalable, and generalizable machine learning
framework with rapid evaluation and turn-around
time to shorten the chip design process.

Source: Wilson Research Group/Mentor

Research Direction

● Apply ML into four different stages of chip design

Standard Constraint Random Verification Flow

• Verification of complex designs starts with
the definition of a verification plan

• Verification engineers create a
testbench to simulate the designs at
the code level

• Checker verifies the design output
against the modeled output

• Test Stimuli is generated from the
feasible solutions of the constraint
solver

4

Constraints and Coverage

• Distribution Constraint

• Legalization Constraint

• Ordering Constraint

5

Set of variables

Set of domains

Set of
constraints

Constraint Solver Simulation Coverage

For Complex designs
over ~1 year
each run >1M cycles

Design Sign-off: Coverage Closure

DV Engineer

• CRV mostly relies on randomness

• At every simulation cycle the seed is changed

• Constraints are defined by DV engineer once and updating them
for better coverage is nontrivial

6

Repeat

Set of variables

Set of domains

Set of constraints

Constraint Solver Simulation Coverage

Set of
weights

Set of
weights

Feedback

Feedback

Tests

CSP

7

Smart Constraint Solver

Set of variables

Set of domains

Set of constraints

Constraint Solver Simulation Coverage

Set of
weights

Set of
weights

Feedback

Feedback

Tests

CSP

8

Smart Constraint Solver

Complexity:

PacketSize: [1,255], Weight: [1, 10],

The search space for possible distribution constraints: 10^252

 Related Work: Coverage-directed Test Generation
• Model-driven

• Converting the design into an abstract finite-state machine
• Mainly suffers from the need to create and maintain an accurate model

• Data-driven
• Models the relationships between coverage and stimuli directives from the

simulation feedback
• Use observations to build and train a model that captures the casualty

between input variables and coverage

Limitations:

• Rely on a significant amount of domain knowledge

• Require a considerable number of simulations to obtain enough training data

• Very challenging for modern large-scale designs as data collection and model
training may take several months.

9

CDG4CDG: Coverage Dependency Graph for Coverage
Driven Test Generation

• Coverage Dependency Graph
(CDG) Extraction

• Build Bayesian Network
automatically

• Find conditional probabilities

• Generate/update constraints
by statistical inference on CDG

10

• We use design parser to find the
correlation of the cover items and the
random variables

• For each coverpoint we query the parser
until we reach a random variable

• For each coverbin, the coveritems are
the values of the random variables
required to be sampled in a test

CDG: Model Functional Coverage as a Bayesian
Network

11

...

...

...

......

...

...

random variables covergroups

coverpoints

coverbins

cover items

CDG Example

12

end-to-end algorithm

13

...

...

...

......

...

...

t-1
random variables covergroups

coverpoints

coverbins

cover items

...

...

...

......

...

...

t

end-to-end algorithm

14

...

...

...

......

...

...

t-1
random variables covergroups

coverpoints

coverbins

cover items

...

...

...

......

...

...

t

Scalability?

Our Approach to Handle Scalability Challenges

Challenge 1: Exact inference in Bayes nets is NP-hard [1]

• Our CDG structure is polytree, thus belief propagation

performs inference efficiently linear in number of nodes [2]

• We use simulation feedback to calculate probability of

hit/no hit for each coverpoint

• We leverage the polytree property since there is only one

path from a coverpoint to the variables

• We iteratively update distribution constraints by

aggregation of no hit counts

15

...

...

......

...

random variables

[1] Cooper, G. F., 1990. The computational complexity of probabilistic inference using Bayesian belief networks.
[2] Bayesian Artificial Intelligence (2004), Kevin B. Korb and Ann E. Nicholson, Chapman and Hall, CRC Press

Our Approach to Handle Scalability Challenges

Challenge 2: Modern large-scale designs may have over

thousands of variables and adding constraints over each variable

significantly hampers practicality of the constraint solver

Solution

• We pick top-k variables from CDG graph

• Rank variables by the number of coverpoints related to them

from its induced subgraph

• Define distribution over range of values

16

...

...

......

...

random variables

Evaluation Setup
Baselines

• default_dist
• Existing distribution (if any)

• random_dist
• Change the distribution constraints randomly

Designs
• Industrial Accelerator SML: TPU block

• TPU block consists of multiple large and complex designs
• Considered three designs in this TPU block (SML1-3)

• RISCV-Ibex
Experimental Results:

• Evaluate CDG4CDG
• Theoretical bound on baseline + Empirical result
• Impact on code coverage

TPU: SML 1
#coverpoints #random variables Coverage closure #bundles Speed up

SML1 371 5 ~ 10^(2^22) 66 vs 340 528 vs ~3k =5.15x

#coverpoints #random variables Coverage closure #bundles Speed up

SML 2 574 7, ~10^(2^43) 23 vs 500+ 184 vs 4k >21.7x

19

TPU: SML 2

#coverpoints #random variables Coverage closure #bundles Speed up

SML 3 1129 12, ~10^(2^65) 66 vs 500+ 504 vs 4k >7.9x

20

TPU: SML 3

Bound on default_dist Baseline
For the baseline, the lower bound of the expected number of
simulation runs to cover all m coveritems is O(m log m), while the
upper bound is infinite

• The best scenario is when the distribution constraint is uniform and
coveritems are equally likely to be covered. In this case, the
problem is reduced to an instance of well known Coupon collector’s
problem

Empirical results
Most of the coveritems in RISCV-Ibex are uniformly specified among all
random variable values

Impact of Functional Coverage on Code Coverage

Though CDG4CDG is designed to improve the functional coverage, it
alters the variable values and the execution paths of the simulation,
and subsequently may affect code coverage as well.

Code coverage on the RISCV-Ibex

Conclusion
• We introduced an automated test generation framework,

CDG4CDG, to accelerate the functional coverage convergence
• CDG4CDG achieves consistent coverage improvement
• Reaches the coverage closure significantly faster with up to 21.7×

speedup in a fully automated flow

24

Questions
azade@google.com

hamids@google.com

