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Abstract

Coverage-driven test generation (CDG) is a well-studied approach to accelerate design verification. However, existing CDG
methods rely on verification experts to extrapolate coverage-to-input relationships or use costly data-driven techniques to learn
these dependencies, both of which introduce significant overhead to the verification process. In this work, we propose CDG4CDG,
a low-overhead framework that automatically extracts the coverage dependency graph associated with a design, and leverages the
dependency information for adaptive test stimuli generation. The test generation is performed by maximum likelihood estimation
method in CDG4CDG that uses the dependency graph as prior information and adaptively changes the distribution of the random
input stimuli to exercise the design more comprehensively towards higher coverage. We integrated CDG4CDG with standard CRV
flow. Our evaluations on open-source as well as large-scale real-world designs of a complex block in tensor processing unit (TPU)
show that our approach significantly speeds up the coverage convergence with no human effort required.

I. INTRODUCTION

Design Verification (DV) is a critical step in chip development to guarantee the correctness of hardware designs [, [2],
[3]. One of the most widely adopted techniques in DV is running hardware simulations to evaluate the designs and uncovers
bugs [4]. A typical way to generate the test input stimulus is through constrained random verification (CRV). In CRV, a
testbench consists of random variables, constraints, and coverage metrics. Random variables are testbench variables whose
values are stochastically generated subject to user-specified constraints. These constraints can be used to enforce the ranges and
distributions of the random variable values (a.k.a. test stimuli). After simulating the design with CRV-generated test stimuli, the
quality of the test is measured by the coverage metrics. To improve the speed and efficiency of verification, many prior works
(S, (el, 170, (81, [9], [LO], [L1] use coverage feedback to guide the test stimulus generation. Such techniques are referred to as
coverage-directed test generation (CDG).

Two main approaches to CDG are model-based CDG and data-driven CDG. In model-based CDG [3], [6], [7], [8], a model
of the design under verification (DUV) is used to generate test-cases targeting desired coverage events. Creating a simple and
accurate model is challenging and requires manual efforts. An example of these models is the abstract finite-state machine
(FSM), which suffers from scalability issues on complex designs. Existing data-driven CDG techniques [9]], [10], [11] aim to
capture the relationship between coverage and stimuli directives directly from the observations gathered from simulation. These
feedback-based techniques either rely on a significant amount of domain knowledge [[11] or require a considerable number of
simulations to obtain enough training data [9]], [10].

These drawbacks make practical implementation of CDG tools for modern large-scale designs very challenging as data
collection and model training may take several months. In this paper, we introduce an automated flow to generate tests for fast
coverage closure with minimal verification overhead. Unlike prior CDG techniques, ours does not require data collection and
model training, and is applicable to complex large-scale designs. Specifically, we leverage the design information parsed from
off-the-shelf design tools and build a Coverage Dependency Graph (CDG) based on the automatically extracted information.
Our flow uses the coverage-to-random-variable dependency from CDG to optimize the test stimuli generation. We call our
approach Coverage Dependency Graph for Coverage Driven Test Generation (CDG4CDG) as we generate the tests by exploiting
the information extracted from the CDG. In CDG4CDG, we formulate the problem of assigning proper distributions to the test
stimuli as a maximum likelihood estimation problem (MLE). We then propose an algorithm that increases the probability of
hitting uncovered events by adaptively tuning the distribution constraints over random variables. We prove that this strategy is in
fact optimal to achieve coverage closure. In this work, we optimize on coverpoints that in CDG can be traced back to random
variables. Coverpoints with an unsolvable mapping to input random variables are out of our scope, and for their coverage, we
rely on random stimuli generation.

We implemented the CDG4CDG flow in a standard CRV pipeline and evaluated its performance on an open-source RISC-V
processor design [12] and a complex block in tensor processing unit (TPU) [13] which is an industry custom supercomputer
for machine learning. The baseline approach is a common industry practice where the test input stimuli are drawn from a
default distribution over random variables. To enable more exploration over the search space and capture the corner cases, we
also compared our approach against random search where the distribution constraints are changed randomly over the simulation
runs. Comparing to the existing CDG-based approaches is not practical because they require domain knowledge about the
designs and are not openly available. We show that under certain scenarios, when coverpoints are uniformly distributed, our



baselines can be competitive. But in real-world designs where the corner cases must be exercised and the underlying distribution
is skewed, CDG4CDG significantly outperforms the baselines.
In summary, we made the following contributions:
« We introduce a framework, CDG4CDG, that automatically handles the coverage dependency extraction and distribution
constraints generation in CRV.
« We propose a method to automatically build the coverage-to-variable dependency graph (CDG) by leveraging the design
information extracted by off-the-shelf tools.
« We formulate the distribution constraints assignment problem for random test stimuli generation as a maximum likelihood
estimation (MLE) problem and devise an optimal algorithm to maximize coverage.
o Our experiments on industrial TPU block show that CDG4CDG consistently achieves higher coverage on all designs.
— CDG4CDG speeds up coverage closure by up to 21.7x compared to the baseline.
— CDG4CDG achieves 100% coverage (coverage closure) with less than 66 iterations while the baseline approach fails to
reach converge closure within 500 simulation runs.
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II. PRELIMINARIES
A. Constrained Random Verification (CRV)

Fig. [I] shows the standard CRV flow. Given a verification plan, verification engineers create a testbench to simulate the
designs at the code level. The key components of a testbench are generator, driver, and monitor. The generator creates a
stimulus, which is sent to DUV by the driver. The driver translates the operations produced by the generator into the actual
design inputs. The monitor component has a checker that verifies the design output against the modeled output. It also contains
all the definitions related to the functional coverage that need to be tested according to the verification plan.

In order to enable the constraint random stimulus generation, random variables and constraints are defined in the testbench.
Constraints defined on the random variables direct the random stimulus generation. There are three types of constraints in a
testbench: legalization constraints, ordering constraints, and distribution constraints. Legalization constraints impose user-specified
valid value ranges on random variables. Ordering constraints are used to specify the ordering of constraint solving for different
random variables. Distribution constraints help to bias the uniform value distribution over a random variable to a user-defined
distribution. Values in a distribution constraint range with higher weights will get assigned more often to a random variable.
Our main focus in this work is on distribution constraints. Fig. [2a] and [2b] show distribution constraints on two random variables
state, and Rsl in SystemVerilog, where distributions are defined over variable values and a range of values respectively. Our
goal is to guide the test stimulus generation toward uncovered events via distribution constraints.

As shown in Fig. [I] simulator in CRV runs the constraint solver to generate random test stimuli that satisfy all the constraints.
A Register-Transfer Level (RTL) simulation is then run with the generated stimuli as input to exercise the DUV and report the
verification coverage. The verification team can attain the statistics of the unexplored events from the coverage analysis to
direct the simulation towards the uncovered events, test parameters and constraints can be changed, or even a new test can be
added. This process continues in order to improve the overall quality of the generated test scenarios toward coverage closure.
However, the current practice is very lengthy and requires a large amount of human effort in the loop.

There has been a lot of work on coverage-directed generation that focused on finding ways to automate this procedure
and reduce the coverage gap. In this work, our goal is to automate this loop by focusing on distribution constraints and the
functional coverage in the testbench. The main idea is to leverage the predefined coverage in the testbench in order to generate
the proper distribution constraints to improve the verification quality and efficiency. Next, we provide a brief background on
existing techniques to motivate our proposed approach.
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B. Coverage Directed Generation

A large body of research on coverage-directed generation (CDG) has aimed at automating the process of leveraging feedback
from coverage analysis to improve stimuli generation [5], [6], [14]], [7], [O], [10]. Many prior works [5], [6], [14]], [7] rely
on model-based CDG where the DUV is modeled with an abstract finite-state machine (FSM). The FSM is used to generate
directives or test cases to hit desired coverage events. Such approach often suffers from the state space explosion problem.
Another line of work [8] describes the behavior of the DUV as constraints over data members of various objects in the DUV.
Both approaches require a significant amount of human effort to create and maintain an accurate model.

Data-driven CDG, rather than modeling the behavior of the design, learns the relationships between coverage and stimuli
directives from the simulation feedback. [I1]] uses expert systems to capture such relations and requires lots of domain knowledge
to analyze the feedback and design. [9]], [10] use observations to build and train a Bayesian network to model the casualty
between input variables and coverage. The observations are the directives to the stimuli generator and the coverage data from the
simulation. The performance of these models heavily relies on the training data that takes a considerable number of simulations
to obtain. It also requires an offline training phase to establish the basis for future online decision-making. These limitations
make implementing and comparing against such approaches impractical.

This paper introduces an automated flow to generate tests for fast coverage closure with minimal verification overhead.
Specifically, we leverage the design information parsed from off-the-shelf design tools and build a Coverage Dependency Graph
(CDG) based on the automatically extracted information. Instead of building and training a model, we directly leverage CDG
and maximize the use of dependency information to improve the coverage.

IITI. PROPOSED VERIFICATION FRAMEWORK

Fig[3] shows our CDG4CDG framework, where it augments design parser to automatically generate a coverage dependency
graph and guide the test stimuli generation in the constrained random verification (CRV) toward coverage closure. Fig4]
illustrates the idea behind CDG4CDG. The blue nodes at the lowest level of CDG are the uncovered coveritems and the red
ones are those that are covered. Distribution constraints at iteration ¢ will be updated based on dependency graph at iteration
t — 1. Next, we discuss the details of our proposed frameworks.

A. Coverage Dependency Graph (CDG) Extraction

As we discussed in section [, many existing CDG tools [9], [10] aim to leverage coverage-to-random-variable dependency.
But, capturing such dependencies rely on expert knowledge and demands a large number of simulations and training. To tackle
this problem, we propose a new approach that automates this process by extracting the coverage dependency graph CDG from
the top-level testbench module.

As shown in Figld] CDG is a directed acyclic graph with hierarchical structure that captures the dependency of covereitem to
random variables. For simplicity, we introduce a running example to illustrate the details of our CDG extraction method. Fig. [3]
shows an example SystemVerilog functional coverage (highlighted blue box) and its corresponding coverage dependency graph
CDG that we generate. Specifically, this example shows a covergroup called cg_memory that gets sampled at every positive
edge of the clock. Each covergroup contains at least one coverpoint that is defined over the value of the random variables. In
this example, state_cp is a coverpoint in cg_memory, that depends on the value of the random variable State. The bins
in coverpoint specify scenarios that the test aims to target e.g. valid_states, valid_trans, and reset_trans. In
standard CRV flow Fig[I] such functional coverage is required to be exercised according to the verification plan defined in the
testbench by verification engineers.
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Fig. 5: Coverage Dependency Graph (CDG) example for a memory controller design

In CDGACDG flow (Fig[3), we query and analyze the top-level testbench module to automatically extract CDG. More
specifically as shown in Fig. [5] for each coverpoint in a covergroup, we back trace until we reach a random variable. Then,
for each coverbin, the coveritems are the values of the random variables required to be sampled in a test. The directed edges
between the coveritems enforce the ordering of values to be observed in a simulation. In Fig. [5] the coverbin valid_states
is used to show if all possible values for the random variable State have been exercised. The other two coverbins aim to
show if particular sequences of state values have been tested. In this graph, a coverbin is deemed covered only when all of
its coveritems are exercised in the test. Note that each coverbin can be associated with more than one variable as shown in
Fig[] and our approach still applies to coverpoints with multiple input variables.

In our experiments, we used Verific SystemVerilog parser tool to query testbench modules and automatically extract the
CDG graph. CDG4ACDG optimizes on coverpoints that can be traced back to random variables. The flow resorts to uniform
random stimuli generation for coverpoints with an unsolvable mapping to input random variables. Next, we discuss how
CDG4CDG uses the current coverage feedback and dependency graph to generate weights and the distribution constraints for
the next iteration.

B. Distribution Constraint Generation

The configuration of distribution constraints is critical to the coverage convergence as it directs the constraint solver to generate
a test stimulus that targets the next set of coveritems. We formulate the problem of finding proper distribution constraints that
maximize the probability P of hitting more coveritems as a maximum likelihood estimation. At every simulation run, given the
unseen coveritems x, the goal is to find distribution constraint #, that maximizes P(x;6). We first propose algorithm [1] to show
how CDG4CDG generates distribution constraints. Then we prove that the distributions generated by our algorithm are, in fact,
the exact solutions to MLE formulation.

From the simulator coverage feedback, we can get all coverage statistics in different hierarchical levels of our CDG graph,
including the covergroups (cg), coverpoints (cp), coverbins (cb), and coveritems (v;). The coverage statistics can be represented
as a multi level dictionary S{cg:{cp:{cb:{v;:0/1}}}}. A coveritem is covered if S[cg[cp[cb[v;]]]] is one. In every simulation
cycle, after getting the feedback and updating the coverage statistics (S) CDG4CDG runs Algorithm [T] to generate new a set of
weights for the next cycle.

The inputs to our Algorithm [I] are the coverage statistics S, and our coverage dependency graph CDG. The output is
distribution weight constraints W = {v:{v;:w;}}, where v is a random variable that takes values v; with weight w;. For
example, W = {State:{idle:10, idle:10, start:10, read:10}} is equivalent to distribution constraint example in Fig. If a
coverpoints is related to more than one variable, all of them will be added to WW. As shown in lines 4-6, it traverses the
covergroups to find the unhit coverpoints. For each uncovered coverpoint, the algorithm looks up the dependency graph CDG
to get all related random variables V' and the coveritem nodes v;. It then checks the coverage statistics and if v; is not covered
yet (S[eg][cp][eb][v;] == 0) it increments the weight W[v][v;] by 1. In CDG, coverpoints and coverbins will be marked as
covered when all their coveritems are covered. Doing so reduces the graph traversal time as more coverpoints get covered.
The output of this algorithm represents the distribution constraints for the next simulation. Note that later in CRV, normalized
weights will be used for test generation.

Next, we show that Algorithm [I]is the optimal strategy that maximizes the probability of hitting target coveritems.

1) Algorithm Analysis

For a random variable v, Algorithm [I] counts the number of times (w;) that coveritems v; are not hit yet. If the next
simulation run returns an observation set x, where random variable value v; appears w; times, then with a high probability, the
overall coverage is increased. The goal is to find a distribution 6 over random variable values v; that maximizes the likelihood

of occurrence of x. More formally:
OmrLe = argmazeP(x;0) )



Algorithm 1 Distribution constraint generation

1: Input: Coverage dependency graph CDG, coverage statistics S

2: Output: Distribution constraint weights W = {v:{v;:w;}}

3: Initialize constraint weights W = {v:{v;:w;=0}}, where v is the random variable, and v; is its value.
4: for Uncovered coverpoint cp € CDG do

5: Get all ¢p’s related related random variables

6 for coveritems v; € coverpoint cp do

7 if S[cg][cp][cb][vi] == 0 then Increment the weight Wv][v;]+=1

8: Coverpoint cp is covered if all its coveritems v; are covered.

9: return W = {v:{v;:w;}}

Given the distribution constraint 6 and the dependency information from CDG, we can calculate the log likelihood of
observing x given the distribution using Equation [2| where n is the size of observation set z, (|z| = > w;).

n! ws
P(x]6) = ot I16:

(2)
log(P(z|0)) = log(n!) — Z log(w;!) + Z w; log 0;

Given that ¢ is a distribution, a constraint to MLE is ). 6; = 1. We use the Lagrange multipliers with this constraint in
Equation [3| to derive the closed form solution of MLE that maximizes the likelihood p(x|6).

L6, 1) = log(n!) — Zlog(wi!) + Zwi log0; + A\(1 — Z 0;)
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Therefore, ZZ % =1,ie, A= ZZ w; =n and 6; = % In other words, the optimal distribution 6; for random variable value
v; is proportional to the number of times that coveritems v; are not hit. The n = ), w; is the normalization factor. Algorithm
returns weights w; and normalization happens in CRV.

IV. EXPERIMENTAL RESULTS

We implemented the CDG4CDG flow in a standard CRV pipeline and evaluated its performance on two SystemVerilog
designs, an open-source processor design and an industrial custom supercomputer for machine learning. We compare CDG4CDG
against a common practice where the CRV is run with existing distribution constraints in testbench (if any), to demonstrate
the impact of weight changing on the coverage. We also compare CDG4CDG against random weight assignments to show
the empirical difference between the two weight assignment strategies. The detailed experimental results are discussed in
section We run two ablation studies (in section to evaluate the impact of binning size on coverage and investigate
the side effect of CDG4CDG on code coverage even though our flow is targeting functional coverage. Finally, in section
we provide a theoretical bound for the performance of the baseline when we do not change distribution constraints, to better
explain its behavior in our experimental results.

Design Details: Two hardware verification designs are presented for evaluation.

o RISCV-Ibex: The first testbench we target is a processor design implementing RISCV ISA called RISCV-Ibex [12].
This testbench leverages RISCV-DV [16], an open-source RISCV instruction generator, to produce random sequences of
compiled instruction binaries as test input. It then simulates the processor to run this input program and compares the
execution trace log with a golden reference output to check for correctness.

e SML: The second design is a complex block in tensor processing unit (TPU) [13] which is a hyper-scale industrial custom
accelerator for machine learning. The TPU block consists of multiple large and complex designs. Each design has an
independent verification environment with predefined coverage. We considered three designs in this TPU block (SML1-3).

Table [I| shows the number of random variables, coverpoints, and weights, defined in each design. There are four random
variables (3 operands and 1 opcode) and ~5K coverpoints in RISCV-Ibex. We generate 111 distribution constraints for this
testbench, including 63 for opcode and 48 for operands (16 weights per operand). For SML designs, the number of random
variables ranges from 10 to 129. The total number of coverpoints defined for design SML1-3 is 371, 572, and 1129, respectively.
The total number of weights is 32, 52, and 84.



Design Number of random variables Number of coverpoints Number of weights

RISCV-Ibex | 4 4942 111
SML1 10 371 32
SML2 25 574 52
SML3 129 1129 84

TABLE I: Testbench information in RISCV-Ibex and three designs in tensor processing unit (SML1-3).

Baseline: We compare the performance of our proposed CDG4CDG approach against two baselines default_dist, and rand_dist.
In default_dist, we use existing distribution constraints which are defined by verification engineer in testbench (if any) and
we do not change them during the simulation, while in rand_dist, we change the distribution constraints randomly to enable
exploring the search space. Note saying that even though there are prior CDG techniques [9]], [LO]; however, the comparison
against them is not practical since they rely on expert knowledge and require simulation runs to collect training data. Besides,
there is no public dataset available. Preparing such a dataset is expensive and relies on expert knowledge.

Experimental Setup: In our experiment, we use Verific [[15] for parsing the designs in SystemVerilog and run the simulation
with VCS [[17] to collect coverage statistics. For VCS and UCAPI, we use Synopsys-VCS-2019-06-sp1, and 2019.06-1 versions
respectively. For each experiment, we run the simulation for 100 iterations, each with new algorithm-suggested distribution
constraints, and we collect the aggregated coverage after each iteration. Our goal is to increase the overall coverage while also
reducing the number of simulation runs. Each experiment is run five times with different random seeds. The seeds in different
iterations are different in CRV. However, for a fair comparison, we used the same random seed among different approaches in
every simulation.

Constraint Binning: Since the value range of a random variable in a design can be extremely large, sometimes assigning one
distribution constraint per value can introduce overhead in the simulation. Therefore, to reduce the total number of constraints,
we group multiple values together via binning and assign one distribution constraint over the bins instead of per value. The
values in one bin have an equal probability of getting sampled. We run an ablation study to empirically investigate the effect of
binning size on performance.

A. Experimental Results

1) Open-source Processor Implementation RISCV-Ibex

We first evaluate our flow on the RISCV-Ibex testbench with four random variables. Our coverage convergence curve in
Fig. [64] shows that CDG4CDG outperforms default_dist and rand_dist at every iteration. Fig. [Ta] shows that, towards the last 800
not hit coverpoints, it takes CDG4CDG 5 to 10 fewer iterations to reach the same coverage compared to the other approaches.
With the same number of simulations, CDG4CDG covers more than 50 additional coverpoints compared to the baseline. Note
that most of the coveritems in this testbench are uniformly specified among all random variable values, and the performance of
default_dist with uniform weights is competitive for the uniform coveritems. Our theoretical bound in the following Sec. [V-C|
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also justifies that default_dist can perform well in this scenario. Nonetheless, CDG4CDG achieves better coverage results over
default_dist, which motivates us to run it on more challenging testbenches from a complex block in TPU.

2) Industrial Accelerator SML: TPU block

Fig. [6b] Fig. and Fig. [6d] show that, compared with default_dist and rand_dist, CDGACDG flow converges faster and
consistently achieves higher coverage over the 100 iterations (simulation runs) on all designs. rand_dist demonstrates similar
convergence rate compared to default_dist, which suggests that solely changing the weights does not lead to better coverage.
The statistics of the not hit coverpoints towards the last 10% coverage for design SML1-3 are shown in Fig. Fig. and
Fig. SML2 result in Fig. [/c] more prominently manifests the advantages of CDG4CDG over default_dist and rand_dist.
CDGACDG takes only 2 iterations (iteration 10-12) on this design to cover 5 coverpoints (from 25 to 20 uncovered coverpoints)
while it takes the other approaches around 10 iterations (iteration 30-40). This again illustrates a 5x test speedup for coverage
convergence. Note that it is more difficult to improve the coverage towards the last 10% coverpoints as they usually are
hard-to-hit cases.

In design SMLI, we observe a less significant coverage improvement from CDG4CDG. It is because sometimes the weight
distribution assignment in this design can violate other constraints. For example, we may assign weight O to the add operation
while there is an existing constraint to ensure there is at least one add operation appear in the test. Such constraint violation
can result in nullification of the specific distribution constraints in CRV but does not lead to test failures. With more weight
constraints successfully applied in SML2 and SML3, we observe better coverage performance from CDG4CDG.

Since after 100 iterations, the baseline fails to reach full coverage, we increased the number of simulation runs to 500. As
shown in Table [lIL on average CDG4CDG reaches 100% coverage at iteration 66, 23, and 63 respectively on design SML1-3
while default_dist converges at iteration 340 on SML1 and it does not converge within 500 iterations on SML2 and SML3. These
results show a minimal 5.15x, 21.7x, and 7.9 verification time reduction towards the coverage closure using CDG4CDG.

SML1 SML2 SML3

5.15% >21.7x% >7.9x
(66 vs. 340) (23 vs. 500+) (63 vs. 500+)

CDG4CDG

TABLE II: Speedup in coverage closure over default_dist. We observe at least 5.15x, 21.7x, 7.9x speedup from CDG4CDG
over the default_dist baseline, respectively, on designs SML1-3.

In Fig. [8] we plot the speedup of CDG4ACDG over default_dist for converging to different coverage values. For example, in
SML2, CDG4CDG takes 9 iterations to reach 90%, while for default_dist it takes 13 iterations, showing, speedup of 1.4x.
The higher the target coverage is, the harder the test is. As shown in this figure, the highest speedup for SML1-3 all achieved
toward the 100% coverage. This indicates that our CDG4CDG is perfect for hard-to-hit coverpoints and can offer a greater
advantage in such cases.

B. Ablation Studies

1) Impact of binning size on performance

In this ablation study, we investigate the impact of the binning size on coverage. On the SML1 design, we evaluate the
coverage performance with 4, 16, 64 values per bin for the distribution constraints. Results in Fig. 0] show that, from 4 bins
to 16 bins, there is a significant improvement in coverage, but when we increase the number of bins to 64, the coverage is
reduced. Fewer values per bin allow the algorithm to more precisely control the random variable values in CRV. However,
more control also will translate to more distribution constraints. This increases the probability that our introduced constraints
conflict with the existing ones in the testbench. Such constraint violation can result in nullification of the specific distribution
constraints in CRYV, but does not lead to test failures.



2) Impact on Code Coverage

Code Coverage is another important metric used to measure the quality of verification. Code coverage, as indicated by its
name, reflects the completeness of a test over HDL code. Though CDG4CDG is designed to improve the functional coverage,
it alters the variable values and the execution paths of the simulation, and subsequently may affect code coverage as well. In
this study, we investigate the impact of CDG4CDG on code coverage on the RISCV-Ibex design. Fig. shows that there
is also improvement in code coverage when CDG4CDG is deployed. One explanation is that our function-coverage-driven
approach more systematically exercises different control variables’ values and leads to the coverage of more code segments.
C. Theoretical Bound on default_dist Baseline

In our experimental evaluations we observe that in some scenarios default_dist can be as competitive as CDG4CDG (see
Fig. [Ta), while in others it is far behind our approach (see Fig.[/c|and Fig.[7d). This observation motivated us to do further
theoretical analysis to understand this baseline. In this section, we discuss our findings on the best-case and worst-case scenarios
that may happen if we do not change the distributions at all. Let us assume total number of coveritems that need to be covered
are m and in worst case every simulation run can cover at most one coverpoint. Note that the same coveritem may be covered
repetitively. The question is that how many times we should run the simulator to cover all of the m coveritems.

Theorem 1. For the fixed distribution constraints, the lower bound of the expected number of simulation runs to cover all m
coveritems is O(mlogm), while the upper bound is infinite.

Proof. Let us start by analyzing the upper bound. If the underlying distribution of the coveritems is heavy-tailed, the convergence
is unbounded. In other words, there exists hard-to-reach coveritems, and the probability of reaching them is very small. Thus,
for the fixed distributions, the expected number of simulation runs to cover all m coveritems tend to infinity.

The best scenario is when the distribution constraint is uniform and coveritems are equally likely to be covered (with probability
%). In this case, the problem is reduced to an instance of well known Coupon collector’s problem, where there are m coupon

types with equal probability of occurrence. At each run, we get one sample and the goal is to collect all m types of coupons.
(18], [19] showed that the expected number of coupons that we need to sample to complete the collection is O(mlogm). O

The above analysis provides clear explanation of our results as follows: Most of the coveritems in RISCV-Ibex are uniformly
specified among all random variable values, making it a great fit for the default_dist approach. Our experimental results also
show that default_dist can be as competitive as CDG4CDG (Fig. for RISCV-Ibex. On the other hand the worst case scenario
usually happens in real practice, where the goal is to test corner cases and the reachability of the coverpoints are different.
Based on Theorem [I] defaulr_dist may fail since the expected number of simulation runs to cover all m coveritems tends to
infinity. Our experiments in Fig. [6] and Table [II] also confirm that defaulr_dist has difficulty in reaching 100% coverage for our
industrial SML designs.

V. RELATED WORK

Coverage-directed test generation (CDG) is an effective and widely adopted technique for hardware verification. There are
two main categories of CDG techniques: model-based [5], [6]], [7], [8] and data-driven [9]], [[10]. Model-based CDG hardly
scales to real industry designs due to the state explosion problem. Meanwhile, data-driven CDG incurs significant training
overhead and still requires expert knowledge of the DUT. StressTest [20] relies on user-defined templates for constructing a
Markov model to direct the instruction sequences generation for processor verification. To support new design, the existing
approaches all require a good amount of expert time. In our work, we aim to eliminate the human effort in the process by
leveraging the coverage to input information that can be directly generated from automatic System Verilog parser. Our tool
extracts the coverage dependency information for any arbitrary hardware designs without training, and automatically adjust the
input for the reachable cover point without human intervention.

Some approaches treat the coverage function as black-box and use machine learning algorithms [211, [22]], [23], [24], [25],
[26], [27] to drive the input generation. We argue that the tool should harness the known information to the maximum extent
to reduce the training overhead. RFuzz [28] and DirectFuzz [29] leverage various input mutation techniques from software
fuzzing at the Bealoon level to exercise DUT. RFuzz introduces RTL transformations to generate FPGA-emulatable designs for
accelerating the verification process. DirectFuzz [30] performs static analysis on the DUT to determine the priority of inputs
for fuzzing. In this work, we target the weight constraints in constrained random verification (CRV) instead of directly mutating
boolean input values. Our approach is similar to the fuzzing-based techniques in the way that it is DUT-agnostic and does
not rely on human knowledge, yet offering the benefits of CDG. However, instead of fuzzing for mux coverage, CRV targets
specific user-defined cases that are critical for functional correctness.

VI. CONCLUSION

In this work, we introduce an automated test generation framework, CDG4CDG, to accelerate the functional coverage
convergence in CRV. Our approach first automatically extracts coverage-to-constraint dependency information and then uses
this information to devise an optimal weight assignment strategy that maximizes the likelihood of hitting uncovered values. We
implement CDG4CDG for both open-source and real-world complex hardware designs and empirically show that CDG4CDG
achieves consistent coverage improvement over the original flow. Furthermore, it reaches the coverage closure significantly
faster with up to 21.7x speedup in a fully automated flow.
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