
Achieving system dependability: the role of
automation and scalability

Teo Cupaiuolo, Synopsys
Paul Baron, Melexis

Ghani Kanawati, Arm

Agenda

• Requirements, challenges and opportunities for automation (Synopsys)

• Early RTL fault injection for automotive ASIL D sensors (Melexis)

• Mitigating Soft Error Impact on System Dependability (Arm)

Requirements, challenges and
opportunities for automation
Teo Cupaiuolo, Functional Safety Solutions Engineer, Synopsys

Agenda

• EDA beyond PPA: introducing new metrics
• Synopsys EDA Solution for Functional Safety

• Random and Systematic Failures
• Analysis, Implementation and Verification
• Tool certification

• Conclusion

EDA Beyond PPA
New Metrics and Requirements for Hardware Design

Functional Safety in a Nutshell
Functional Correctness & Controlled Impact of Defects

Safety is the Reduction of Risk Caused by Electric and Electronic Systems Malfunctions

Functional Safety as a New Metric in RTL2GDS Flow

FuSa Analysis & Exploration

Efficient and Faster FuSa Verification

FuSa Implementation

Holistic Support of Safety Mechanisms
Analysis, Verification and Implementation

FuSa Analysis Challenges

FuSa Verification Challenges

FuSa Implementation Challenges
Synopsys Solutions Based on Safety Specification Format (SSF) & EDA

A Holistic Solution: Flows and Interoperability

Synopsys Engines and Flows for Design-For-Safety

Functional Safety in a Nutshell
Functional Correctness & Controlled Impact of Defects

Safety is the Reduction of Risk Caused by Electric and Electronic Systems Malfunctions

Risk of Systematic Faults Is Minimized
Processes, Knowledge, Certified Tool Chains

• Design architecture, modeling and implementation must follow best practices

• Design Failure Mode and Effect Analysis (DFMEA) must be used to recognize and evaluate potential systems,
products, or process systematic failures and to define the corresponding mitigation measures

• Functional verification must be more thorough and rigorous

– Mandatory to know the limitations of the verification techniques and to combine them

• Functional and safety requirements must be tracked and linked to the actual design specification and functional
verification

• Tools and processes must be evaluated

– Both dynamic and formal functional verification must be qualified

A function can’t be considered safe if it is buggy in an unknown way
Use state of the art tools and techniques for verification

Synopsys: Design with the Highest Confidence Level!

https://www.exida.com/SAEL-Safety/Synopsys-Digital-
Tool-Chain

https://www.exida.com/SAEL-Safety/synopsys-
verification-tool-chain

https://www.exida.com/SAEL-Safety/Synopsys-TestMAX-
Tool-Chain

https://www.exida.com/SAEL-Safety/synopsys-library-
tool-chain

Verification Tool Chain
Systematic Certification

TestMAX Tool Chain
Certification

Digital Tool Chain
Certification

Library Tool Chain
Certification

http://www.exida.com/SAEL-Safety/synopsys-library-tool-chain
http://www.exida.com/SAEL-Safety/synopsys-digital-tool-chain

Summary

• EDA beyond PPA…introducing new metrics

• EDA Solution for Functional Safety
• Random and Systematic Failures
• Analysis, Implementation and Verification
• Tool certification

• Functional Safety methodologies are still evolving
• Synopsys is focused on innovation
• And interested in collaborating with partners

Early RTL fault injection
for automotive ASIL D sensors

Paul Baron, Digital Design Engineer
Philippe Laugier, Digital Competence Center manager

Our activities have high safety needs

● Magnetic position sensors
● Inductive position sensors
● Current sensors
● Pressure sensors
● Tire monitoring sensors
● Temperature sensors
● Optical sensors
● Sensor interfaces

In average, 18 Melexis chips in every new car - 48 in a Tesla Model S

Automotive context
● IC complexity increase

● More safety critical applications (ADAS)

Source: ZVEI

● Time to market decrease (〜10 to 20% per year)

Source: Jabil

More time
needed

Less time available

Houston, we have a problem!

Our solution: A Platform approach

● A ready to use set of highly configurable components
● Components are assembled to realize the specified functionality
● Each component is “ASIL-D ready”

CPU
(16/32

bits)

RAM/RO
M

(Raw/
Parity/
ECC)

COM
interface

ADC Timers WD

Platform Pros and Cons
Constraints Consequences [mitigable] Threats

"A kind of" Bottom-up approach
Not very fashionable
Components must exist upfront Marketing good enough?
Components must be highly configurable Development time overhead?

Components not designed for a specific project
Impose a SEooC methodology

Area overhead?
Cannot rely on another component

Technology and layout agnostic Impose a RTL fault injection Results representivity vs. gates?
RTL coding attention From coding constraints up to coding obfuscation

Method Strengths Notes/Threats

Fault injection per component

Results available [almost] at project start Avoid late “bad surprises”

Much faster than on the full circuit seconds/minutes vs. hours/days

Ease development of complex components "Russian dolls"

RTL fault injection per component Validate safety mechanism(s) Gate coverage may be ≤ RTL coverage

SEooC Project specific requirements give better results e.g residual faults can become safe

Final gate level fault injection campaign Only to confirm estimated values Minor differences

Block verification

• Safety Element out of Context (SEooC)
• Configurable independant safety level
• Fault injection on each block:

• On RTL
• Documented safety hypotheses
• SPFM target: 100%, LFM target: 90%
• All faults injected
• Out-of-context approach

• Reuse of shared verified sub-blocks
(registers with parity, safe counters, etc…)

Top verification

• Known context (technology, safety goal, safety margin, etc…)

• Configured safety level of blocks according to needs
• Fault injection on top:

• On RTL -> to get early estimation
• On Gates -> to confirm results
• SPFM and LFM targets according to ASIL level
• Statistical approach for injected fault sample
• In-context approach of a typical application

• Reuse of platform blocks already checked
• Custom blocks development respects platform rules

Metric customization

• SPFM can be split into:
• Safeness:

Proportion of safe faults (≈50%)
-> Check that top testcase gives enough

stimulus

• Diagnostic coverage:
Proportion of detected faults among unsafe

faults

Fault injection on RTL and Gate Level

• For blocks:
• RTL coverage ≈ Gate coverage ± 5%

• For top:
• RTL coverage ≈ Gate coverage ± 1%

• Accurate RTL coverage thanks to:
• Multiplicity and diversity of blocks

-> Averaging tendency
• Z01X optimizations (pruning, testability,

etc…)

-> Mimic synthesizer optimization

Summary
Platform’s block Project’s top

Fault population RTL, all faults RTL and Gate Level, sampled faults

Strategy Improve safety mechanisms and add
hypotheses until all faults are detected Check metric targets in typical usecases

Flow Out-of-context check for full coverage
(injected as Residual)

In-context check for project target
(injected as Safe)

Typical fault amount 100 - 5,000 10,000 - 30,000 for RTL
50,000 - 200,000 for Gate Level

Typical runtime ≈ 10 min ≈ few hours

Questions?

Mitigating Soft Error Impact on
System Dependability
Ghani Kanawati, Technical Director of Functional Safety, Arm

Agenda

• Introduction/Problem Statement
• Identification of Critical Registers
• Automatic Insertion of Error Detection Codes with SSF
• Proposed Customer Flow with SSF
• Parity Insertion on Arm Design
• Summary

Introduction/Problem Statement

Arm IP is Ubiquitous Throughout Industry
Infrastructure Mobile

WearablesClient

Market Segment Dependability Requirements
Different Segments have different Dependability Requirements

• Arm targets IP for many different markets
• Each market can have its own standard for compliance

• Arm IP is developed to be configurable.
• Same core, different use case
• Heavy customisation and configuration would be necessary to deliver a compliant IP

for use in automotive as well as Industrial application
• Not feasible for Arm to model all of these different use cases
Automotive
Autonomous driving

Industrial
Factory Automation

Consumer
Domestic Robots

Current Arm IP Release Flow
IP Protection for Dependability

• Arm will insert SMs at the IP RTL level
• Examples

• ECC
• Parity on large Register Files

• Arm Software Test Library (STL)
• SW safety mechanisms targeting permanent faults

• Arm define additional SM requirements for customer
insertion at SoC level (Assumptions of Use)

• Examples
• DCLS
• Watchdog timer/monitoring around IP
• IP register hardening (SEU tolerant)/Parity

• Arm also highlight potential areas of weakness
• Recommend further analysis by customer depending on use case

Assumption of Use (AoU) - Limitations

• AoUs are costly to implement at the customer SoC level
• High Area Overhead
• SMs not efficient

• Register hardening/Parity insertion throughout IP
• Customer may not accept 100% hardening due to PPA limitations
• Customer will need to do further analysis to find critical registers

DCLS has High Area Overhead

Register hardening throughout the core
has limitations for PPA

Identification of Critical Registers

Identification of Critical Registers
Shift Left Solution

• Need a shift left to enable customers to identify critical registers in IP
based upon unique use case

• Advantages
• No costly SOC level solutions
• Better PPA tailored to customer use case
• Efficient SM insertion

Use TestMAX FuSa to identify
critical registers in Arm IP

Use Fusion Compiler to
insert parity into design

Solutions Methodologies: TestMAX FuSa
Fast static analysis to drive design changes for FuSa & Reliability
improvement

• Fast early Dependability metrics calculation
• Diagnostic Coverage (DC)
• Single Point Fault Metric (SPFM)
• Failure Mode Distribution (FMD)

• Shift-left – analysis performed at RTL and netlist
• Report a priority list of registers with higher vulnerability

to soft errors

• Vector-less – does not require testbench
• Option available to run with vectors through FSDB input

• Scales to very large designs
• Runs in hours on hundreds of millions of gates
• Can be run at hierarchical level and not limited to block

level

Prioritized
design

changes
SPFM

RTL or
Netlist

Analysis

ISO 26262 Certified

User-applied
design
constraints

Presenter Notes
Presentation Notes
I don’t think the results hold true for every application if exact metrics are needed, because its software dependent, but definitely useful to “make things better” and avoid needed the software – which is a pain to run even if it exists and will change in time anyway. I think it will work better with an accelerator than a CPU because operation is more consistent and less software dependent.

TestMAX FuSa static analysis
Fault Propagation based on probabilities

• TestMAX FuSa calculates controllability and
observability probabilities of logic nodes in a design

• Does not require testbench stimuli

• Observation points can be specified at top-level
port or hierarchical pin or net

• Ability to black box modules protected via ECC

• Ability to identify fault sensitive aspects of the
hardware

• Report a priority list of registers with higher
vulnerability to soft errors

Calculation of Soft Error Failure

Static analysis: controllability calculation

Static analysis: observability calculation

FF1

FF2

FF3

FF1

FF2

FF3
Calculate

Calculate

TestMAX FuSa Calculates SPFM & Reports
Register Contributions

Prioritized List of Registers With Largest
Contribution of Single Point Soft Error Failures

0.5% addition to SPFM

Presenter Notes
Presentation Notes
This report shows list of registers with largest contribution of single point soft error failures. Which means the faults will reach a safety critical output and will not be detected.
So, the user can choose to replace some of the top registers in the report with hardened cells or triple module redundancy (TMR), to add functional safety mechanism. Next slide shows an example

Probability – of what?
Safety (N) means ….

Automatic Insertion of Error Detection
Codes with SSF

• What is SSF?
• Common commands supported by all relevant Dependability tools in digital

implementation flow

• Why was SSF created?
• Capture Dependability intent and implementation at various stages of the

design

• What does it look like?
• Intent: define type of SM (create_*_rule) to protect certain element (set_*)
• Implementation: track elements of inserted SM (mark_*)

• What value does SSF add?

Synopsys Safety Specification Format (SSF)

SSF

Error Code (EC) Handling with SSF
Implementation

Synthesis

Placement

CTS

SSF

Routing

ECO Optimization

SSF Support through all
implementation stages/engines
- Maintains QOR

SSF Driven EC Synthesis

Type: ECC/EDC/Parity
Correction/Error Signal Synthesis

SSF Driven CMI Minimization

EC Register Separation
EC Isolation

Error Code Handling with SSF
create_safety_error_code_rule (SSF)

• A safety error code rule is an abstract object that captures
information about how to handle ECs

• ECs can be encoded with even/odd parity, EDC (Hamming2) or ECC
(Hamming3)

create_safety_error_code_rule
-name rule_name
[-type <even_parity | odd_parity | ecc | edc >]
[-slice_size <num_bits>]
[-distance <dist>]
[-isolation]

Physical handling

Error Code Handling with SSF
set_ safety_error_code_rule and mark_ safety_error_code (SSF)
• The set_safety_error_code_rule applies the error code rule to a register bank or bus fabric in the

design
• It sets intent for simulation and insertion

• The mark_safety_error_code command identifies existing ECs in the design (RTL or netlist)
• The command will be auto created during physical implementation from the applied intent

mark_safety_error_code

-name group_name

[-requirement_id <string>]

-rule <rule_name>

-data <encoded signals>

[-checkbits <generated checkbits>]

[-error_signal <pin_port>]

[-correction_signal <pin_or_port>]

set_safety_error_code_rule

[-requirement_id <string>]

-rule <rule_name>

-data <signal to be encoded>

[-error_signal <pin_port>]

[-correction_signal <pin_or_port>]

Proposed Customer Flow with SSF

Proposed Customer Flow with SSF

SSF

Implementation

DC-NXT

IC Compiler II

Fusion Compiler

RTLA

Formal Equivalence Check
RTL -> Gate

Formality

RTL Critical Register
Identification

TestMAX FuSa

Auxiliary SSF -
Critical Register List

SM intent

SSF

Gate Level Fault Simulation

VC Z01X

Gate Level Metric Analysis

TestMAX FuSa

RTL Critical Register List
Validation (Fault Injection)

VC Z01X






Presenter Notes
Presentation Notes
RTL Fault simulation – taking critical register list (from TM Fusa) and runs dynamic simulation and correlates list.

Parity Insertion on Arm Design

Parity insertion on Arm design using SSF
hntelp_vector Block

• hntelp_vector, large block from hunter_elp design
• 2.5M Instances
• tsmc cln05

• Requirement - to insert parity on all registers in
u_ct hierarchical block

• 150,757 standard cells
• 14,507 registers

Parity insertion on Arm design using SSF
Safety Specification Format (SSF)

ssf_version 1.1

create_safety_error_code_rule -name
error_rule1 \

-type odd_parity \

-sequential \

-slice_size 8

set pin [get_objects_for_safety -pattern
u_ct/*reg*/Q -object_type pin]

set_safety_error_code_rule \

-rule error_rule1 \

-data $pin \

-error_signal sec_err

• SSF File
– Single input file to Fusion Compiler to drive FuSa

Intent

• Parity Insertion Format
Odd Parity

Slice size of 8 bits

Applied to registers in hierarchical block
u_ct

Error signals to top level port

Parity insertion on Arm design using SSF
Error Code Placement and Logical Representation

EC placement (~3000 groups) Single group placement

Single group schematic

Including OR tree

Parity insertion on Arm design using SSF
Dependability Report

• Dependability report performs checks on all inserted safety mechanisms
• > report_safety_status

Statistics - passed/failed

--

| type category total passed failed |

| ==== =========================== ===== ====== ====== |

| SR safety register rules 0 0 0 |

| SR safety register groups 0 0 0 |

| SC safety core rules 0 0 0 |

| SC safety core groups 0 0 0 |

| SC safety cores 0 0 0 |

| FSM failsafe FSM rules 0 0 0 |

| FSM failsafe FSM groups 0 0 0 |

| SEC safety error code rules 1 1 0 |

| SEC safety error code groups 2966 2966 0 |

--

Presenter Notes
Presentation Notes
SR Safety Registers (TMR/DMR)
SC Safety Cores (DCLS)
FSM Fasilsafe Finite State Machine
SEC Safety Error Core

Parity insertion on Arm design using SSF
Flow Results

• Fusion Compiler baseline and parity flow QOR results
WNS TNS NVE Util StdCelllArea StdCells Total, uW Leakage, uW DRCs Shorts

Baseline -0.0083 -0.0271 8 0.6184 278062 2262906 5.01E+04 4.90E+04 356 1

Parity -0.0111 -0.0726 37 0.6228 280037 2299896 5.55E+04 5.45E+04 419 1

• EC Group metrics
– Registers in u_ct hierarchy (pre-insertion): 14,507
– EC Groups Inserted: 2,966
– Data + parity registers in EC Groups: 17,473

• EC Group bit slice distribution
Group Count with 1 bits: 704

Group Count with 2 bits: 164

Group Count with 3 bits: 19

Group Count with 4 bits: 546

Group Count with 5 bits: 71

Group Count with 6 bits: 401

Group Count with 7 bits: 15

Group Count with 8 bits: 10,046

Summary

Summary
• Arm dependability flows require partnership with customers in handling

soft error protection
• TestMAX FuSa can be used at the RTL phase to identify critical registers and pass

them on to Implementation for conversion to Error Codes during Synthesis

• Arm Design
• Native Error Code insertion during synthesis was demonstrated on Arm design using

SSF intent
• Error Code density within the hierarchy was as expected
• Neutrality in QOR compared to baseline was demonstrated

• Next Collaboration Steps
• Identify critical registers using TestMAX FuSa and pass to implementation via SSF
• RTL to gate Formal Equivalence Check using Error Code virtualization in reference
• Integration into Arm customer reference flows

Questions?

	Achieving system dependability: the role of automation and scalability
	Agenda
	Requirements, challenges and opportunities for automation
	Agenda
	EDA Beyond PPA�New Metrics and Requirements for Hardware Design
	Functional Safety in a Nutshell�Functional Correctness & Controlled Impact of Defects
	Functional Safety as a New Metric in RTL2GDS Flow
	FuSa Analysis & Exploration
	Efficient and Faster FuSa Verification
	FuSa Implementation
	Holistic Support of Safety Mechanisms�Analysis, Verification and Implementation
	FuSa Analysis Challenges
	FuSa Verification Challenges
	FuSa Implementation Challenges�Synopsys Solutions Based on Safety Specification Format (SSF) & EDA
	A Holistic Solution: Flows and Interoperability
	Synopsys Engines and Flows for Design-For-Safety
	Functional Safety in a Nutshell�Functional Correctness & Controlled Impact of Defects
	Risk of Systematic Faults Is Minimized�Processes, Knowledge, Certified Tool Chains
	Synopsys: Design with the Highest Confidence Level!
	Summary
	Early RTL fault injection�for automotive ASIL D sensors
	Our activities have high safety needs
	Automotive context
	Our solution: A Platform approach
	Platform Pros and Cons
	Block verification
	Top verification
	Metric customization
	Fault injection on RTL and Gate Level
	Summary
	��Questions?
	Mitigating Soft Error Impact on System Dependability
	Agenda
	Introduction/Problem Statement
	Arm IP is Ubiquitous Throughout Industry 	
	Market Segment Dependability Requirements�Different Segments have different Dependability Requirements
	Current Arm IP Release Flow�IP Protection for Dependability
	Assumption of Use (AoU) - Limitations
	Identification of Critical Registers
	Identification of Critical Registers�Shift Left Solution
	Solutions Methodologies: TestMAX FuSa�Fast static analysis to drive design changes for FuSa & Reliability improvement
	TestMAX FuSa static analysis�Fault Propagation based on probabilities
	TestMAX FuSa Calculates SPFM & Reports Register Contributions
	Automatic Insertion of Error Detection Codes with SSF
	Synopsys Safety Specification Format (SSF)
	Error Code (EC) Handling with SSF
	Error Code Handling with SSF�create_safety_error_code_rule (SSF)
	Error Code Handling with SSF�set_ safety_error_code_rule and mark_ safety_error_code (SSF)
	Proposed Customer Flow with SSF
	Proposed Customer Flow with SSF
	Parity Insertion on Arm Design
	Parity insertion on Arm design using SSF�hntelp_vector Block
	Parity insertion on Arm design using SSF�Safety Specification Format (SSF)
	Parity insertion on Arm design using SSF�Error Code Placement and Logical Representation
	Parity insertion on Arm design using SSF�Dependability Report
	Parity insertion on Arm design using SSF�Flow Results
	Summary
	Summary
	��Questions?

