
Accellera FS WG Update
Alessandra Nardi, Accellera FS WG Chair
Ghani Kanawati, Technical Director, ARM

Agenda
• The Accellera Functional Safety Working Group (FS WG)

• Challenges and Requirements
• Mission and the FS Standardization Landscape
• Scope and Key Objectives

• The Accellera Functional Safety Standard
• FMEDA process formalization
• Conceptual Data Model (Entities and Attributes)
• Examples (using a prototype language)
• Validation
• Challenges and Methodologies

• What’s Next?
• Further scoping of industry requirements

• Safety Requirements Handling
• Verification

The Accellera Functional Safety Working Group

Accellera FS WG: History and Statistics
October 2019
PWG Formation

December 2019
F2F Kickoff

February 2020
WG Formation

March & October 2020
Virtual F2F Standardization work

(How)
Q2 2021
White Paper

End-2022
White Paper on Conceptual Data model definition

30+ companies

30+ companies

Industry needs and support
(What and Why)

Q2 2023
Draft language (LRM) release

Alessandra Nardi, Functional Safety Working Group Chair
Bala Chavali, Functional Safety Working Group Vice-Chair
Darren Galpin, Functional Safety Working Group Secretary

Challenges and Requirements

6

Examples of Challenges and Requirements

Exchange of FS data between
suppliers and integrators

1 Connection between the FS data
and the design information2

Sharing of FS data across operations/work
products in the same layer3 4

T
ra

ce
ab

ili
ty

 o
f i

nf
or

m
at

io
n

 a
cr

os
s

th
e

d

is
tr

ib
u

te
d

d
ev

e
lo

p
m

e
nt

 e
nv

iro
n

m
en

t
5

Exchange of same FS data
across different automation tools1

FMEDA FS Verification plan FMEDASupplier A

FMEDASupplier B
FMEDA Integrator X

FMEDASupplier A

FMEDA Integrator X

FMEDA Integrator Y

FMEDA DFA

Preliminary FMEDA Final FMEDA Design
metricsFMEDA

Mission of the FS WG

• Define a FS language to capture and propagate the functional safety data through the flow/supply chain
• Enable interoperability, traceability and automation

Mission and the FS standardization Landscape

IEEE
P2851

(*)

(*) Once completed and published, the Accellera FS standard is planned to be contributed to IEEE as per traditional collaboration between Accellera and IEEE

Scope

Accellera FS data format/language

FS data = set of data needed to perform safety activities and to generate work products

Key Objectives

• Harmonize best practices and methodologies across the
industry via common language

The data model is in addition to the existing design standards

• Enable efficient interchange of data representing functional safety concepts
• across the diverse lifecycle development tool chain and

• among organizations engaged in distributed development

• Be comprehensive, flexible, and scalable to minimize future perceived needs
for local or proprietary customization

Approach to Data Model Development

Functional Safety Analysis Process Formalization

Conceptual Data Model

Functional Safety Language

1

2

3
The actual exchange of information will happen through the FS Language

LRM (*)

(*) Language Reference Manual

The conceptual data model approach

Goals:
Define FS data
Not to provide a reference implementation
Systematic approach to define a language/format

Source: https://www.guru99.com/data-modelling-conceptual-logical.html

Conceptual Data Model:
Defines WHAT the system contains
Does NOT define HOW the system should be implemented

Using the Entity Relationship model
Source: https://www.guru99.com/data-modelling-conceptual-logical.htmlThe 3 basic tenants:

Entity: The object/data describing the system to be modeled
Attribute: Characteristics or properties of an entity
Relationship: Dependency or association between two entities
In addition, we rely on the concept Weak entity, which cannot be identified by its
attributes alone, but only exists in the context of another entity

Employer

Employee
• ID: 123456 (Unique identifier)
• Year_joined: 2012

Employee
• ID: 158946 (Unique identifier)
• Year_joined: 2012

Dependent
• Employee_ID: 123456
• Name: John

Dependent
• Employee_ID: 158946
• Name: Carla

Design
Hierarchy

FS analysis
Hierarchy

Intended
Functionality

Analysis

FM
Hierarchy

Failure Mode
Analysis

Technology
Element

Safety Mechanisms
Library

Functional Safety Analysis Process Formalization

FM
Effects

Failure Mode
Effects Analysis

Application
of SM

s

Te
ch

no
lo

gy

El
em

en
t

Id
en

tif
ic

at
io

n

FMEDA

Calculated FR

Calculated
metrics

Design
Hierarchy

FS analysis
Hierarchy

Intended
Functionality

Analysis

FM
Hierarchy

Failure Mode
Analysis

Technology
Element

Safety Mechanisms
Library

Functional Safety Analysis Process Formalization

FM
Effects

Failure Mode
Effects Analysis

Application
of SM

s

Te
ch

no
lo

gy

El
em

en
t

Id
en

tif
ic

at
io

n

FMEDA

Calculated FR

Calculated
metrics

FM Effects
Mapping

SM
Mapping

Design MappingDesign Mapping

FM_mapping {design instances}Element_mapping {design
instances}

Technology
Element
Mapping

18

FMEDA process data Entity Type Information Type

FMEDA FMEDA Object

FS Analysis Hierarchy Element Object

FM Hierarchy Failure_Mode Object

Technology Element Technology_Element Object

Safety Mechanism Library Safety_Mechanism Object

FM Effects Failure_Mode_Effect Object

SM Mapping SM-FM Relationship

FM Effects Mapping FM-FME Relationship

Technology Element Mapping TE-FM Relationship

Technology Element Mapping TE-Element Relationship

Design Mapping Inside the TE-FM since there is no Design
Hierarchy in the datamodel Relationship

Design Mapping Inside the TE-Element since there is no
Design Hierarchy in the datamodel Relationship

Calculated FR FR_ISO26262 Weak object (*)

Calculated metrics Metrics_ISO26262 Weak object (*)

Calculated FR FR_IEC61508 Weak object (*)

Calculated metrics Metrics_IEC61508 Weak object (*)

Conceptual Data Model derived from the FMEDA process

Direct traceability from the data + mapping of FMEDA process to data model

Conceptual Data Model scope and hierarchy

Sample Language
• Following the principle of traceability, a sample language can be

derived directly from the conceptual data model with clear rules:
• Objects are created and updated with “create” and “set” commands
• Relationships are created with the “assign” commands
• Weak objects are assigned a value with the command “define”

• Special rule stands for the Design mapping:
• Since it connects objects in the data model to objects in the design hierarchy

(not part of the data model)
• It is described through the “-mapping” and “-exclude_mapping” options

inside the design mapping relationship commands.

Conceptual Data Model + sample commands
FMEDA process data Entity Type Information

Type Commands

FMEDA FMEDA Object create_fmeda, set_fmeda

FS Analysis Hierarchy Element Object create_element, set_element

FM Hierarchy Failure_Mode Object create_failure_mode, set_failure_mode

Technology Element Technology_Element Object create_failure_mode, set_failure_mode

Safety Mechanism Library Safety_Mechanism Object create_failure_mode, set_failure_mode

FM Effects Failure_Mode_Effect Object create_failure_mode, set_failure_mode

SM Mapping SM-FM Relationship assign_SM_FM

FM Effects Mapping FM-FME Relationship assign_FM_FME

Technology Element Mapping TE-FM Relationship assign_TE_FM

Technology Element Mapping TE-Element Relationship Assign_TE_Element

Design Mapping Inside the TE-FM since there is no Design Hierarchy in the datamodel Relationship assign_TE_FM –mapping {…} –exclude_mapping

Design Mapping Inside the TE-Element since there is no Design Hierarchy in the datamodel Relationship assign_TE_Element –mapping {…} –exclude_mapping

Calculated FR FR_ISO26262 Weak object (*) define_FR_ISO26262

Calculated metrics Metrics_ISO26262 Weak object (*) define_metric_ISO26262

Calculated FR FR_IEC61508 Weak object (*) define_FR_IEC61508

Calculated metrics Metrics_IEC61508 Weak object (*) define_metric_IEC61508

Traceability of Data Model Development

Direct consistent mapping from
process to data model objects

Direct translation from data model
to language with defined rules

Traceability from:
• Requirements (FMEDA process objects and mapping) to
• Implementation of requirements (FS data model and then language commands)

Detailed Conceptual Data Model
Entity Attribute Name Attribute Type Default Description R D

FMEDA

FMEDA_Name String N/A Name (identifier) of the FMEDA of the project. Y N

Type

Enumerate {
assumption-
based,
calculation-based}

Calculation-based

Selects whether the FMEDA is assumption-based or calculation-based.
This attribute is informative only.
If type = calculation-based, the user can still specify the failure mode contribution
through the “failure mode size attribute”.

N N

ASIL Enumerate {
A, B, C, D} D Defines the ASIL for the FMEDA (for a given Safety Goal) according to ISO26262

Used also to specify that the FMEDA is for ISO26262 N N

SIL Enumerate {
1, 2, 3, 4} 1 Defines the SIL for the FMEDA according to IEC61508

Used also to specify that the FMEDA is for IEC61508 N N

Analysis_Type

List of Enumerate
{
Permanent
Transient
All}

All

Defines the failure types to be considered and which metrics to be calculated within
the safety analysis.
More than one value can be specified, e.g. Failure_Type = {Permanent} or
Failure_Type = {Permanent, Transient}
The value “All” implies all Failure Types are activated. Defined as “All” instead of
“Both”, to allows to plan for more than just Transient and Permanent.

Y? N

Creator String N/A Name of the company that generated the FMEDA. N N
Date Date N/A Date when the FMEDA was generated. N N
Version Float N/A Version of the FMEDA. N N
Data_Model_Version Float N/A Version of the data model N N
Comment String N/A Information which does not have a specific field in the FMEDA object. N N

R: Required
D: Derived

Detailed Conceptual Data Model
R: Required
D: Derived

Category Attribute Name Attribute Type Default Description R D

Element

Element_Name String N/A Name (identifier) of the Element Y N
Element_Description String N/A Description of the intended functionality of the Element N N

Element_Type

Enum {
System,
Element,
SubElement,
Component,
SubComponent,
Part,
SubPart}

?

Specifies the type of the Element.

Element_Type = Component or SubComponent can only be
defined if the analysis is for IEC61508, inferred from the
FMEDA entity, whether it has ASIL or SIL defined

Y N

Parent_Element String N/A Connects the Element to its Parent in the FS hierarchy N N
FMEDA_Name String N/A Connects the FS hierarchy to the FMEDA project Y N

Example #1 – Project Independent

• Define a Technology Element library
• “Analog_5n” FR_permanent=3e-9
• “Digital_5n” FR_permanent=1e-9 FR_transient=8e-9
• “RAM_5n” FR_transient=10e-9

• Define a Safety Mechanism library
• Parity DC_transient=70
• ECC DC_transient=60
• TMR DC_transient=99
• SM1 DC_permanent=78

Analog_5n

Digital_5n

RAM_5n

Technology Element Library

Parity

ECC

TMR

Safety Mechanisms Library

SM1

create_technology_element -name “Analog_5n” –type “analog” –FR_permanent 3e-9
create_technology_element -name “Digital_5n” –type “digital” –FR_permanent 1e-9 –FR_transient 8e-9
create_technology_element -name “RAM_5n” –type “RAM” –FR_transient 10e-9

create_safety_mechanism –name “ECC” –DC_transient 70
create_safety_mechanism –name “ECC” –DC_transient 60
create_safety_mechanism –name “TMR” –DC_transient 99
create_safety_mechanism –name “SM1” –DC_permanent 78

Example Sample Language
Defining the TE and SM libraries

Example #1 –
Project Dependent

Top Part Subpart FM

CPU

ALU_X
MULT32 FM_001
ADD32 FM_001

ALU_Y
MULT32 FM_001
ADD32 FM_001

DEC FM_001

ICACHE
FM_001
FM_002
FM_003

PARTN
S_PART_X.S_PART_Y FM_004
S_PART_X.S_PART_Z FM_001

PARTD FM_001

Top Part Subpart Subpart FM

CPU

ALU_X
MULT32 FM_001
ADD32 FM_001

ALU_Y
MULT32 FM_001
ADD32 FM_001

DEC FM_001

ICACHE
FM_001
FM_002
FM_003

PARTN S_PART_X
S_PART_Y FM_004
S_PART_Z FM_001

PARTD FM_001

OR

create_fmeda -name “CPU_FMEDA” -type “assumption”

create_element -name “ALU_X” -type part -fmeda “CPU_FMEDA”
create_element -name “ALU_Y” -type part -fmeda “CPU_FMEDA”
create_element -name “DEC” -type part -fmeda “CPU_FMEDA”
create_element -name “ICACHE” -type part -fmeda “CPU_FMEDA”
create_element -name “PARTN” -type part -fmeda “CPU_FMEDA”
create_element -name “PARTD” -type part -fmeda “CPU_FMEDA”

Example Sample Language
FMEDA, FS Hierarchy and FM definition

create_element -name “MULT32” -type subpart -parent_element “ALU_X” -fmeda “CPU_FMEDA”
create_element -name “ADDER” -type subpart -parent_element “ALU_X” -fmeda “CPU_FMEDA”

create_element -name “MULT32” -type subpart -parent_element “ALU_Y” -fmeda “CPU_FMEDA”
create_element -name “ADDER” -type subpart -parent_element “ALU_Y” -fmeda “CPU_FMEDA”

create_element -name “S_PART_X” -type subpart -parent_element “PARTN” -fmeda “CPU_FMEDA”

create_element -name “S_PART_Y” -type subpart -parent_element “PARTN.S_PART_X” -fmeda
“CPU_FMEDA”
create_element -name “S_PART_Z” -type subpart -parent_element “PARTN.S_PART_X” -fmeda
“CPU_FMEDA”

create_failure_mode -name “FM_001” -parent_element “ALU_X.MULT32” -fmeda “CPU_FMEDA”
create_failure_mode -name “FM_001” -parent_element “ALU_X.ADDER” -fmeda “CPU_FMEDA”

create_failure_mode -name “FM_001” -parent_element “ALU_Y.MULT32” -fmeda “CPU_FMEDA”
create_failure_mode -name “FM_001” -parent_element “ALU_Y.ADDER” -fmeda “CPU_FMEDA”

create_failure_mode -name “FM_001” -parent_element “DEC” -fmeda “CPU_FMEDA”

create_failure_mode -name “FM_001” -parent_element “ICACHE” -fmeda “CPU_FMEDA”
create_failure_mode -name “FM_002” -parent_element “ICACHE” -fmeda “CPU_FMEDA”
create_failure_mode -name “FM_003” -parent_element “ICACHE” -fmeda “CPU_FMEDA”

create_failure_mode -name “FM_004” -parent_element “PARTN.S_PART_X.S_PART_Y” -fmeda
“CPU_FMEDA”
create_failure_mode -name “FM_001” -parent_element “PARTN.S_PART_X.S_PART_Z” -fmeda
“CPU_FMEDA”

create_failure_mode -name “FM_001” -parent_element “PARTD” -fmeda “CPU_FMEDA”

assign_TE_FM –TE_name “Analog_5n” –FM_name “FM_001” -parent_element “PARTD” -fmeda “CPU_FMEDA” –FM_size_permanent 10
assign_TE_FM –TE_name “Digital_5n” –FM_name “FM_001” -parent_element “ALU_X.MULT32” -fmeda “CPU_FMEDA” –FM_size_permanent 35
…
assign_TE_FM –TE_name “Digital_5n” –FM_name “FM_001” -parent_element “DEC” -fmeda “CPU_FMEDA” –FM_size_permanent 10 –FM_size_transient 20
assign_TE_FM –TE_name “RAM_5n” –FM_name “FM_001” -parent_element “ICACHE” -fmeda “CPU_FMEDA” –FM_size_transient 10

assign_TE_FM –TE_name “Analog_5n” –FM_name “FM_004” -parent_element “PARTN.S_PART_X.S_PART_Y” -fmeda “CPU_FMEDA”
assign_TE_FM –TE_name “Analog_5n” –FM_name “FM_001” -parent_element “PARTN.S_PART_X.S_PART_Z” -fmeda “CPU_FMEDA” –FM_size_permanent 5
assign_TE_FM –TE_name “Digital_5n” –FM_name “FM_001” -parent_element “PARTN.S_PART_X.S_PART_Z” -fmeda “CPU_FMEDA” –FM_size_permanent 5

Example Sample
Language
FM-TE Mapping

Digital_5n RAM_5n Analog_5n

assign_SM_FM –SM_name “Parity” –FM_name “FM_001” -parent_element “ALU_X.MULT32” -fmeda “CPU_FMEDA”
assign_SM_FM –SM_name “Parity” –FM_name “FM_001” -parent_element “ALU_X.ADD32” -fmeda “CPU_FMEDA”

assign_SM_FM –SM_name “TMR” –FM_name “FM_001” -parent_element “ICACHE” -fmeda “CPU_FMEDA”
assign_SM_FM –SM_name “SM1” –FM_name “FM_001” -parent_element “ICACHE” -fmeda “CPU_FMEDA”

Example Sample
Language
SM-FM Mapping

Parity TMR SM1

Validation

D
ev

el
op

m
en

t
FMEDA process + Methodologies/Use Cases

(Requirements)

Conceptual Data Model + Language
(Implementation)

Va
lid

at
io

n

Validation of the Proposed Data Model
+ another proposal

FMEDA examples

Challenges
• Harmonization of the FMEDA process
• Agreement on the conceptual data model: top-down or bottom-up?
• Requirements and Use Cases

• General: simplicity vs complexity (and flexibility)
• Inputs and Outputs // Use cases

• Methodology
• Handling Safety Mechanisms // Use cases and priority schema
• Hierarchical FMEDAs (and integration)

• Language
• Required for FMEDA vs required by the data model (the use of defaults)
• Atomic commands vs split commands

Handling of Safety Mechanisms

SM Library

Scope/Entity Description Attribute

SM in isolation

SM: Safety Mechanism
FM: Failure Mode
DC: Diagnostic Coverage

DC_Perm
DC_Trans

SM-FM

FM

SM applied to a FM

Multiple SM applied
to a FM

DC_Perm
DC_Trans

DC_Total_Perm
DC_Total_Trans
DC_Aggregation_method
DC_expert

Priority ↑

Handling of Safety Mechanisms

SM Library

Scope/Entity Description Attribute

SM in isolation

SM: Safety Mechanism
FM: Failure Mode
DC: Diagnostic Coverage

DC_Perm
DC_Trans

SM-FM

FM

SM applied to a FM

Multiple SM applied
to a FM

DC_Perm
DC_Trans

SM1: DC_Perm=90%, DC_Trans=60%

SM2: DC_Perm=30%, DC_Trans=60%

SM3: DC_Perm=60%, DC_Trans=90%

SM1-FM1: DC_Perm=80%, DC_Trans=50%

SM2-FM1: DC_Perm=30%, DC_Trans=60%

SM3-FM1: DC_Perm=45%, DC_Trans=75%

FM1: Aggregate_Method=Max
FM1: DC_Total_Perm=80%
FM1: DC_Total_Trans=75%

DC_Total_Perm
DC_Total_Trans
DC_Aggregation_method
DC_expert

Handling of Safety Mechanisms

SM Library

Scope/Entity Description Estimated

SM in isolation

SM: Safety Mechanism
FM: Failure Mode
DC: Diagnostic Coverage

DC_Perm
DC_Trans

SM-FM

FM

SM applied to a FM

Multiple SM applied
to a FM

DC_Perm_est
DC_Trans_est

DC_Total_Perm_est
DC_Total_Trans_est
DC_Aggregation_method
DC_expert

Measured

N/A

DC_Perm_meas
DC_Trans_meas

DC_Total_Perm_meas
DC_Total_Trans
DC_Aggregation_method
DC_expert

Do we care about
this use case?

? ?

Simplicity or Complexity?

…and we could also have added a DC_aggregation for Permanent and DC_Aggregation_Transient

Two important use cases

• Authoring/recalculating an FMEDA
• IP provider share FMEDA to integrator that will

harden the IP
• The integrator might also want to configure the

IP
• The data exchange focuses on the inputs to

enable FMEDA calculation and update

FMEDA inputs

Design Under
Analysis

FMEDA ENGINE FMEDA report

And everything in between….configurability!
 FMEDA reports includes inputs and outputs….what goes into the language???

 Exchange/auditing an FMEDA report
- IP provider share FMEDA to integrator that will not

modify it
- Some input data used to calculate the metrics (e.g.

Failure Mode size) might not be shared
- The data exchange focuses on FMEDA reports (read

and integrate)

What’s Next?

• Wrapping up version 1.0
• Working on the White Paper to include the conceptual data

model…stay tuned
• Looking for feedback

• F2F on December 7 (open to the community)
• F2F on December 8 (Accellera members/working session)
• After the White Paper is published

• Finalize the language and publish the LRM (2023)

Questions ?

Future Work
Ghani Kanawati, Technical Director of Functional Safety, ARM

Topics for Future Investigation

Safety Case

Intra & Inter
Operability

Safety
Manual

Assumption of
Use

Safety
Standards

Reliability
&

Availability

Verification
& Validation

Data ModelSafety Analysis

Future Topics

Safety Requirements and AoUs

Safety Verification

Inadequate requirements & AoU: Exploring the root cause?

inadequate
requirements

practices? inadequate
requirements

processes inadequate
org life-cycle

processes

inadequate
training &
examples

other factors?

inadequate
description

languages &/or
methods

inadequate tools

• Mix of root causes. Mix may vary across orgs. Inadequacies in org life-cycle processes dominate
• Accellera needs to closely examine ROI of efforts here, i.e. we could spend a lot of time addressing one of the root causes but the needle does not shift in industry

inadequate
governance

inadequate
planning

processes

inadequate quality
assurance

inadequate
standards

inadequate
awareness

Fig. Mind map of root causes for inadequate requirements

What is the problem?
Problem1: Inadequate practices

• Completeness
• Unclear
• Inconsistencies
• Unambiguous
• Does not meet intended behavior?
• Dependencies
• Lack of appropriate processes followed (proper training planning, practices)
• Safety requirements are not evaluated in a complete and a systematic way

Problem 2: Derive complete accurate IC level requirements
• Challenges of interpreting and deriving the IC requirements
• What additional attributes are needed to address the interpretation/derivation from system requirements
• Missing attributes in the requirements to enable derivation

Problem 3: How do we know that the application/module Concept (Functional/Technical) map to IC level the requirements

Standardization of Requirements and AoU
What it is:
• Define criteria of a good “Requirement”
• Additional attribute from safety perspective
• Attributes (one or more) to enable traceability; ex:
parent child relationship
• Identify constraints and assumptions to satisfy the
requirement
• How requirements are linked to the Data model
• Item-to-IP
• Functional Req
• Technical Requirements
• HW and SW requirements (how we derive the HW and
SW requirements)

Scope: Define Requirements “Attributes” to support requirement types
Attributes to enable traceability of any requirements and its corresponding engineering activities

What it is not:
• Standard for writing requirements; there are
many out there and there is no intention yet to
develop another
• Traceability – to enable impact and analysis

Requirement Interact With Other FUSA Work Products

HW
Requirements

Parent
Requirements

Architecture

Architectural
FMEDA

SM

DFA

SW
Requirements

Detailed
FMEDA

FUSA
verification

SM

Verification/
Validation

Requirements

Other
silicon
tasks

Example 1 Interconnect
Symbol Requirement Type Description

PR1 Product Requirement Data Protection on Cache

ER1 Architecture Req Dual lock step shared RAM

ER2 Architecture Req Logical isolation of Dual lock step (primary, secondary)

DE1 uArch Requirement Agent shared RAM

DE2 uArch Requirement Temporal diversity

FM1 Architecture FMEA Transaction failure

FM2 Architecture FMEA Message failure

DFA DFA CCF

Example-1 Interconnect

PR1

ER1ER2

DE1

TC

DE2

PR: Product Req
ER: Engineering Req
DE: Design Req
TC: Test content Req

DFA FM1

Assumed Technical Req

Example-1 Interconnect

PR1

ER1ER2

DE1

TC

DE2

PR: Product Req
ER: Engineering Req
DE: Design Req
TC: Test content Req

DFA FM1

Assumed Technical Req

DLS Shared RAM

Transaction Failure

Shared $ for DLS

Agent Shared RAM

Temporal DiversityMessage Failure

Diversity

CCF

Example-2 Fabric

PR1

ER1

ER2

DE1 FM1

DE2Shall incorporate mechanisms
to detect Failures on internal
interconnect

Message transfer
Failure

Shall detect internal
Network failures

HW duplication of
internal blocks

Internal fabric protected
with error Detection HW

Payload corruption
FM2

Add CRC to interfaceSpurious/dropped
transactions

DE3FM3

Network latent fault
protection

VT
Fault injection on
network interface

VT: Validation requirement

FMEDA

Capture the Intra-Layer Operations/Data/Workproducts

Safety
Case

FMEDA

FS intent/data FMEA

FTA

DFA

FS Verification

FS Design

Standardization Opportunity

AoU &
Requirements

Data
Model

FS Architecture

BFR/
Reliability

Safety
Manual

Tracking/Traceability
See slide 12

Tracking and Traceability

• All requirements have to be tracked, and will have link to verification,
validation and design engineering related tasks

• Same standardization applies for those
• Without tracking and fulfilling all requirements we cannot release

device to production

Attributes of Safety Requirements/AoUs

Recommended Attributes (WIP)

Attribute More Information

Unique Identifier

FTTI, FDTI, FRTI Range of values (max, min)

Parent Requirement(FSR, TSR, SG)

Version of the requirement

Hierarchy Group(SF, FSR, TSR, System, HW , SW, Verification, etc) If Hierarchy is applicable. Need to define the type for other safety standards

Module Identifier

For HW: Type of HW requirements (Analog, Digital, memory, other technology)

Assumed Diagnostic requirement (Safety features)

Systematic/Random

Safety related/non safety related

Description Describe the function

Additional information about the requirement

Recommended verification tasks/link to tasks for traceability What is expected ?

Type of requirement (FUNCTIONAL, NON-FUNCTIONAL) Make sure that the word “Type” is in the context of what it is defined

Executive Summary
• Enough evidence that the Safety Requirements and AoU work group is needed
• Still work to be done to identify the interfaces with other FUSA work-products
• Examples shown earlier are only to demonstrate the intra-layer

interdependencies which were not meant to list all the inter dependencies.
• The FS WG recommends to continue the effort by expanding the scope

(identifying all the interfaces between Requirements and other work-products
(FMEDA, DFA, Architecture FMEA, Safety Verification, FTA, Architecture and
Design).

• More volunteers are welcomed to participate in the WG.

Safety Verification/Validation

• Identify how the Data Model should support the different verification methods
• What are the changes that are needed in the data model to support these methods

FMEDA

FTA

DFA

Fault Simulation

Safety Verification/Validation

Formal Methods

Analytical Methods

Combine
different
metrics

DC%

Safe/Not safety

DC%

Structural AnalysisProbability

Safety Analysis

Page 57

Verification problems
• Verifying safety mechanisms and failure modes

• Normal functional verification needs to inject a fault (a failure mode) to test a safety mechanism to hit the standard coverage
metrics. Can we export this coverage for use elsewhere?

• Have fault injection campaigns, can we record the results at an IP level to pass up to a system level?

• May run statistical fault injection campaign at system level – if the statistical sample selects a fault already tested at an IP level,
reuse that.

• All of the above can leverage the FM and SM information in the database, but needs to extend this to identify the signals
where the failure modes can be sampled, and where the failure can be observed. Also potentially need to record time of flight
information for fault observation.

Page 58

Analog/mixed simulation FMEDA
• Current proposal has focussed just on digital designs. But can do an FMEDA on analog and mixed-signal designs as well.

• Can have a fault which is observed in the digital part and detected in the analog, and vice versa.

• New IEEE P2427 standard for analog fault simulation which includes fault models and weighting schemes

• Proposals[1]

• Extend failure_mode definition to mark whether it is digital or analog

• If analog, have a fault model scheme which you can select from. Default to the models used in the IEEE P2427 annex (which
includes user defined).

• If analog, take weighting schemes from IEEE P2427 annex, allow selection between them or user defined

• Extend safety_mechanism definition to mark whether it is digital or analog

• If analog, have an alternative set of analog enums for the type field

Questions ?

