
Accelerating Error Handling Verification
Of Complex Systems: A Formal Approach

Bhushan Parikh, Peter Graniello, Neha Rajendra

Intel Corporation

Agenda

• Acronyms

• Introduction

• Proposed Methodology

• Results

• Summary

Acronyms

• CBRV => Constraint Based Random Verification

• FPV => Formal Property Verification

• CEX => Counter Example (/Failure)

• FSM => Finite State Machine

Error Handling Verification: Vital & Challenging

• Vital
• One of the key components in grading the reliability of a system

• Challenging
• Computer systems have advanced significantly and are now distributed

systems

• Vast number of possibilities that can result in an error due to increased
complexity

Classifications Of Errors
System
errors

Undetectable
errors

Detectable
errors

Soft errors Hard errors

Memory
errors

Specification (Spec)
violation errors

Programming
errors

Example Of A Complex System

error_code[7:0]

Uncompressed

data stream

error_code_vld

idle_state

HW Decompression IP

Decode

Logic

Error

Detection

Logic

Control

FSM

error

Compressed

data streamFrame

header

Frame

size

Block_0

header

Block_0

payload

Frame

Checksum

Block_1

header

Block_1

payload

Block_n

header

Block_n

payload

Block

Type

[0:m-1] bits

Block

Size

[0:n-1] bits

Compression

level

[0:k-1] bits

Only some combinations are valid (e.g. J)

Remaining combinations (2m+n+k - J) are spec errors

J can be much less than 2m+n+k

Requirements & High-level Verification Plan
• Error handling requirements

• All spec errors shall be detected correctly

• Detectable errors shall be reported with the respective error code

• Shall gracefully complete the processing

• High level Verification Plan
• Error detection verification

• Verify that detectable errors are detected correctly

• Error reporting verification
• Verify that detected errors reported with correct error code

• Graceful completion verification
• Verify that the system gracefully completed processing of any input data

Challenges Associated With CBRV Methodology

• Difficult to generate test vectors with spec error
• SW compressors are spec compliant and complex to

modify

• Too many combinations to verify
• Assertion of an error is an asynchronous event with

respect to the rest of the design functionality

• Manual and time consuming
• Identification and development of directed test-

cases required for completeness

How About FPV?

• Widely accepted methodology and mainly
used to accomplish normal (i.e., non-error)
functional verification goals

• However, can be very effective achieving error
handling verification related goals

Primary Inputs Are Free Nets In FPV
• Formal engines will exercise every

possible combination of the required
stimulus

• Need to specify only the expected
behavior for errors

• CEX due to under-constrained formal environment most likely translate to
actual bugs

Header Multibit Fields

Block Type Compression
Level

Type A
1-20 Valid

0,21-31 Spec
Violation

Type B
1-9 Valid

0,10-31 Spec
Violation

Error Detection Verification (CBRV vs FPV)
• E.g., verify that compressed stream violating block size specification is

detected correctly (i.e., BLOCK_SIZE <= SPEC_BLOCK_SIZE)
• BLOCK_MAX_SIZE = Maximum possible value of the field

• SPEC_BLOCK_SIZE = Maximum value supported by the specification

• BLOCK_SIZE = Decoded value from the compressed stream

• CBRV
• # of test cases =

BLOCK_MAX_SIZE –
SPEC_BLOCK_SIZE

• FPV
• Only two assertions are required,

• (BLOCK_SIZE > SPEC_BLOCK_SIZE) |->
##[0:$] block_size_error

• block_size_error|-> (BLOCK_SIZE >
SPEC_BLOCK_SIZE))

• FPV assertions and methodology can
be applied to all specification errors

Lossless HW Decompression IP Spec Errors
• Other examples of specification errors for the lossless HW

Decompression IP

Spec Error Explanation

Unbalanced Huffman Tree The Huffman Tree used for compression is not balanced

Received incorrect code The Huffman code does not match with encoding of any symbol from the compressed
stream

Distance out of range The copy location in token is too far behind

Incomplete Stream The compressed stream is not complete

Padding Byte Error Padding bytes in the compressed stream are corrupted

Constraints Can Back-propagate In FPV

• Exercise complex combination of stimulus at top level using simple
assumptions at lower level

Packet

processor

Packet

handling

logic

pkt_type[7:0]

pkt_valid

packet_stream

assume {packet_type inside {1,2,3}}

Formal engine

guarantees

packet_stream

adheres the

assumption

Formal engine

guarantees

packet_type

adheres the

assumption

Error Reporting Verification (CBRV vs FPV)
• E.g., verify that detected error condition is reported using correct

error code
• ERROR_CONDITION_N = Detected error condition

• ERROR_CODE_N = Expected error code for ERROR_CONDITION_N

• CBRV
• Minimum # of test cases = # of

supported error codes ((28 – 1)
= 255 in our case)

• FPV
• Only two assertions are required,

• (error_condition ==
ERROR_CONDITION_N) |-> ##[0:$]
((error_code == ERROR_CODE_N) &&
(error_code_vld))

• ((error_code == ERROR_CODE_N) &&
(error_code_vld)) |-> (error_condition ==
ERROR_CONDITION_N)

Graceful Completion Requirement

• What is it?
• After processing any request, system shall gracefully exit to a

known (or an IDLE) state and be serviceable

• Importance
• A key reliability aspect especially for network accelerators (e.g.,

lossless HW Decompression IP)

• Any bug in the implementation may lead to Denial of Service (DoS)
attacks
• E.g., an attacker with an erroneous compressed stream can put the entire

system in an unrecoverable state and making it unavailable for rest of the
users

FPV Allows Cut-point Insertion In Design
• Can convert any signal in the design to a free net

HW Decompression IP

Decode
Logic

Error
Detection

Logic

Control
Logic

compressed
data

stream

uncompressed
data

stream

error

error_code

error

HW Decompression IP

Decode
Logic

Error
Detection

Logic

Control
Logic

compressed
data

stream Formal tool
drives error

signal
(1'b0/1'b1)

uncompressed
data

stream

error

error_code

IDLE

STATE
_B

STATE
_C

STATE
_A

event_0

event_1

event_2

event_4

error

error

error

STATE
_D

error

event_3

error

STATE
_E

Insert cut-point for error
signal

Graceful Completion Verification (CBRV vs FPV)
• E.g., verify that control FSM reaches to IDLE state for any error

condition

• CBRV
• Develop a test to assert the

error signal

• Modify the test to ensure that
error signal is asserted for every
state

• Develop and analyze functional
coverage to verify that all
possible cases are covered

• FPV
• Create cut point for the error signal

• Only two assertions are required,
• $rose(error) |-> ##[0:$] idle_state

• (error && idle_state) |-> ##1 idle_state

Results (1/2)
• Despite its late deployment, FPV

found 75% of the overall error
handling verification bugs
• Bugs were complex and could not

have found using CBRV

• For completeness, reproduced
25% of the remaining bugs using
FPV

75%

25%

0%

20%

40%

60%

80%

100%

FPV CBRV

R
T

L
 b

u
g

s
fo

u
n

d

Methodology

Percentage of RTL bugs found vs Methodology

Results (2/2)
• Completed error handling

verification task well ahead of
planned schedule
• Leveraged various industry

standard techniques and achieved
100% convergence for all
assertions

• Various formal coverage metrics
and iterative reviews of FPV test-
plan to sign-off

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

E
rr

o
r

h
an

d
lin

g
 v

er
if

ic
at

io
n

 p
ro

g
re

ss

Work Week

Error handling verification progress vs Methodology
(normalized to one engineer)

CBRV FPV

Summary

• Discussed error handling verification and challenges associated with
achieving sign-off for it using CBRV methodology

• Demonstrated the effectiveness of applying FPV methodology to
address these challenges

• Future work includes leveraging FPV methodology in security
verification

Thank you!

Questions?

