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Abstract-Error handling verification is one of the key phases in determining reliability of any embedded system.  It 

involves verifying that the system correctly detects and gracefully reports various errors.  This is especially critical for 

Smart Network Interface Cards (NICs) as they are usually located in an isolated environment and need to be continuously 

online with a very little to no human interaction.  Failure to report an error may expose security vulnerabilities such as 

denial of service.  Due to the technological advancement in recent years, the complexity of Smart NICs has increased, 

resulting in a greater number of error scenarios.  This has made the task of error handling verification even more 

challenging using constraint based random verification (CBRV).  In this paper we will demonstrate how leveraging 

Formal Property Verification (FPV) can address these challenges using our work on error handling verification of a 

hardware (HW) Decompression IP. 

 

I. IMPORTANCE OF THE ERROR HANDLING VERIFICATION 

Computer systems have achieved significant progress in the areas of technology, performance, and capability 

during the last quarter century. These systems are now distributed systems instead of a standalone system which has 
created several challenges to meet high Reliability requirement of 99.999% [2]. A reliable system does not silently 

continue and deliver results that include corrupted data. Instead, it detects, reports and, if possible, corrects the 

corruption. 

Error handling is one of the key components in evaluating Reliability of the system. It is the process comprised of 

anticipation, detection, and resolution of errors. Error handling ensures that the system has correctly identified and 

reported the error. In addition, it guarantees that the system gracefully completes erroneous execution and stays 

available for serving the next task, thus maintaining the normal flow of execution. 
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Figure 1. Classification of System Errors 

 



 

 

As shown in Figure 1, system errors can be classified in two main categories, Undetectable and Detectable.  Since 

only detectable errors can be reported, handled, and corrected, handling of these errors falls in scope of the error 

handling verification. 

Categorization of detectable errors gives an idea of the vast possibilities that can result in an error which the 

system needs to report, handle and, if possible, correct.  This makes error handling verification extremely difficult to 
plan, execute and deliver.  In addition, any gaps/holes in verification will result in late breaking pre silicon bugs or 

last-minute post silicon issues.  We will use a lossless HW Decompression IP as an example to illustrate this. 

 

II. CHALLENGES ASSOCIATED WITH ERROR HANDLING VERIFICATION 

A HW Decompression IP consumes compressed data stream as input and produces uncompressed data.  Figure 2 

shows a block diagram of a conceptual compressed data stream.   
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Figure 2: Block diagram of a conceptual compressed data stream 

 

The stream consists of various fields – Frame Header and Frame Size followed by 1 or more Block Header and 

Block Payload pair and terminated with a Frame Checksum.  Usually most of these fields are multibit fields.  The 

field widths and possible field values are determined by the targeted algorithm specification.  In addition, some of 
the values and combinations of these fields are marked as reserved for future use.  For example, in RFC 1951 

specification, block type is a two-bit field and has defined 2’b00, 2’b01, 2’b10 as valid values while 2’b11 as 

reserved value [1].  The presence of any such reserved/undefined values or combinations in the compressed data 

stream should be considered as a violation of the specification.  It is the responsibility of HW Decompression IP to 

detect and report such combinations as errors and gracefully assert completion of the task.  

In the CBRV methodology, various compressed data streams are used as test stimulus to verify a lossless HW 

Decompression IP.  Hence, a Pre-Si Verification (PSV) engineer must identify the right uncompressed data that can 

generate desired compressed data streams.  Typically, various SW compressors are used to process the desired 

uncompressed data and generate compressed data streams.  The SW compressor comes with limitations, as listed 

below, which becomes a major roadblock in verification of error detection capability of a lossless HW 

Decompression IP. 

1) It will only generate a subset of all possible legal encodings 
2) It has subtle optimizations to improve performance which are not easy to reverse-engineer from the 

implementation. 

3) It is spec compliant and will not generate a compressed data stream with illegal encoding or field values.   

One approach to address this is to use data generator – a utility that can produce desired compressed data stream 

based on input data and some other knobs/options, but this requires additional time and resources for the 

development and verification of such data generator.  Also, it does not address the problem of defining and 

executing various test-cases targeting numerous combinations of compressed data stream required to thoroughly 

verify error detection task of error handling verification activity.  To summarize, error handling verification of a 

lossless Decompression IP is very challenging and may require months of effort/resources to complete it using 

traditional CBRV methodology. 

 
III. PROPOSED METHODOLOGY 

Formal Property Verification (FPV) is a technique that is widely acknowledged and accepted for improving 

validation effectiveness [3].  This methodology is commonly used to accomplish functional verification goals and 

identify corner case bugs in the normal (i.e., non-error) functionality of the design.  In contrast, we extended this 

methodology for the error handling verification task of our lossless HW Decompression IP and completed the task in 

half the number of weeks compared to CBRV.  To present this methodology we will start with the high-level plan 



 

 

for the error handling verification task, a brief discussion of the challenges associated with it followed by how 

various FPV techniques can address the challenges. 

A high-level plan for error handling verification is comprised of, 

1) Error detection verification: verify that the system is detecting error correctly 

2) Error reporting verification: verify that the system is reporting any detected error correctly 
3) Graceful completion verification: verify that the system completed erroneous execution gracefully and is 

ready for next task/request 

A. Error detection verification 

As previously seen, the biggest challenge with error detection verification of the decompression IP is to create 

corrupt compressed data streams for the desired error condition.  In FPV methodology one needs to specify only the 

expected behavior for the given error condition instead of identifying the required stimulus to exercise the behavior 

and the formal tool will ensure to exercise every possible stimulus.  This makes FPV very fast and effective for error 

detection verification.   

Let’s understand this in a little more detail using an example.  Consider the Block header field in Figure 2, it 

contains the size of the block payload (BLOCK_SIZE).  The maximum value of block payload 

(BLOCK_MAX_SIZE) is defined in the targeted lossless compression standard specification (e.g., [4]).  A spec 

compliant and reliable HW Decompression IP is required to assert an error signal (e.g., block_max_size_error) when 
it detects BLOCK_SIZE > BLOCK_MAX_SIZE.   

In the CBRV methodology, the PSV team will need to test every single compressed stream which can result in 

(BLOCK_SIZE > BLOCK_MAX_SIZE) condition.  Unfortunately, this results in many test cases.  With FPV, the 

problem can be solved with two assertion properties as shown in Figure 3 - an assertion to detect the (BLOCK_SIZE 

> BLOCK_MAX_SIZE) error condition and an assertion to detect the block_max_size_error signal.  Here the 

formal tool identifies all possible conditions for (BLOCK_SIZE > BLOCK_MAX_SIZE) and verifies the respective 

error signal trigger. 

 

parameter BLOCK_MAX_SIZE = BLOCK_MAX_SIZE_NUMBER;
parameter BLOCK_MAX_SIZE_WIDTH = $clog2(BLOCK_MAX_SIZE+1);

logic [BLOCK_MAX_SIZE_WIDTH-1:0] block_size;
logic block_max_size_error;

assert_block_max_size_error_when_detected :
assert property ((block_size > BLOCK_MAX_SIZE) |-> ##[0:M]  block_max_size_error);

//M >= 0, dependent on the implementation
assert_block_max_size_error_only_when_detected :

assert property (block_max_size_error |-> (block_size > BLOCK_MAX_SIZE));
 

 
Figure 3. Assertions Required to Verify a Spec Error 

 

The TABLE I shows some more examples of complex spec errors for which we have leveraged FPV methodology 

to verify that the lossless HW Decompression IP detects these errors correctly. 

   

TABLE I 

SPEC ERRORS AND THEIR BRIEF EXPLANATION 

Spec error Explanation 

Unbalanced Huffman tree  The Huffman tree used for compression is not balanced 

Distance out of range The copy location in token is too far behind 

Received incorrect code The code does not match with encoding of any symbol from the compressed stream 

Invalid block header The block header field/s description does not match with the specification 

Invalid encoding Decoded symbol value does not match any value specified in the specification 

Incomplete stream The compressed stream is not complete 

Padding byte error Padding bytes in the compressed stream are corrupted 

 

 



 

 

B. Error Reporting Verification 

To reduce the complexity of the error reporting structure for the system, we implemented a scheme that utilizes a 

single error valid signal accompanied by an 8-bit error code bus reflecting an error code for the targeted error as 

shown in Figure 4.  Thus, the task of error reporting verification required verification of 256 different test-cases.  
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Figure 4. High Level Block Diagram of the HW Decompression IP with Error Code Valid and Error Code Bus 

 

Like the verification of error detection, here also PSV will need to generate many tests to cover the breadth of 

conditions to verify error reporting.  With FPV, the two assertions shown in Figure 5 would sufficiently complete 

the error reporting verification for any given error condition (ERROR_CONDITION_N, where N >= 0). 
It is important to note that when using FPV methodology the verification is more exhaustive.  For example, 

assertions defined in Figure 3 do not only check that error is asserted when there is an error condition but also verify 

that error is asserted if and only if error condition is seen.  Similarly, assertions defined in Figure 5 check that the 

error code is generated if and only if its respective error condition is observed in addition to the generated error code 

is correct. 

 
parameter ERROR_CODE_BUS_WIDTH = 8;
parameter ERROR_CODE_INCOMPLETE_BLOCK = 255;
parameter ERROR_CONDITION_INCOMPLETE_BLOCK = INCOMPLETE_BLOCK_DETECTED;

logic [ERROR_CODE_BUS_WIDTH -1:0] error_code;
logic error_incomplete_block;
logic error_condition;

assert_error_code_incomplete_block_when_detected_error_condition_incomplete_block_detected :
assert property ((error_condition == ERROR_CONDITION_INCOMPLETE_BLOCK) |-> 

##[0:M] ((error_code == ERROR_CODE_INCOMPLETE_BLOCK) && (error_incomplete_block)));
//M >= 0, dependent on the implementation

assert_error_code_incomplete_block_only_when_error_condition_incomplete_block_detected :
assert property (((error_code == ERROR_CODE_INCOMPLETE_BLOCK) && (error_incomplete_block)) |->

(error_condition == ERROR_CONDITION_INCOMPLETE_BLOCK));
 

Figure 5. Assertions Required for Verifying an Error Code 

 

C. Graceful Completion Verification 

Now that the error detection and reporting for all errors are verified, the next step in error handling verification is 
to ensure that the system will gracefully exit to a known (or an IDLE) state and be serviceable.  This is a very 

important reliability aspect for network accelerators such as a lossless HW Decompression IP.  For example, if an 

attacker gets access to a compressed stream that can put the system in an unrecoverable (also known as hang or an 

error state where it always produces incorrect output) state then he/she can bring down the entire network by 

constantly sending the bad compressed stream and keeping the system in hang state thus making it unavailable for 

rest of the users.  This is known as Denial of Service (DoS) attack.  Therefore, it is essential for the lossless HW 

Decompression IP to complete its task and return to a known state in the event of an erroneous stream. 

As we have seen in the previous section our design of lossless HW Decompression IP has a total of 255 error 

codes.  Now for any of the 255 possible errors, an error can occur at any cycle and the timing of the error assertion is 

an asynchronous event with respect to the rest of the design functionality.  Also, there may be cases where more 

than a single error is present.  Hence, it may require weeks/months of random regressions and coverage analysis to 
verify only a subset of the possibilities and impossible to verify all possible combinations without missing the IP 

development schedule using the CBRV methodology. 

Formal tools have the capability to create cut-points in the design i.e., disconnect any signal/net from its driver 

and drive that signal to every possible value during the formal run.  This can be very powerful in verifying graceful 

completion.  To understand this better let’s consider Figure 6. It shows a simplified block diagram of the lossless 

HW Decompression IP error handling logic along with the control logic as a Finite State Machine (FSM) diagram 

on the right. 
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Figure 6. Simplified Block Diagram of the Lossless HW Decompression IP Error Detection and Control Logic 

 

To verify that the FSM returns to the IDLE state after an error condition, the CBRV methodology requires the 

following: 

1) Develop a test that can cause the error signal to assert. 

2) Add hooks to the test such that the error signal can only assert when the FSM is in the specific state. 

3) Repeat this for all states of the FSM. 

4) Develop and analyze functional coverage to verify that all possible cases are covered. 

In the FPV methodology, a cut-point can be created for the error signal as shown in Figure 7.  The formal tool 

then has the freedom to assert the error signal whenever it is required.  If there are no assumptions added to the error 

signal, the formal tool will exercise all possible combinations.  Using this strategy, only two assertions, shown in 
Figure 8, are needed to verify graceful completion logic of the design. 
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Figure 7. Simplified Block Diagram of the Lossless HW Decompression IP Error Detection with Cut-Point 

 

//Formal environment setup to create cut point for signal error

assert_fsm_1_transitions_to_idle_state_after_error_assertion :
assert property ($rose(error) |-> ##[0:M] (fsm_1_present_state == IDLE));

//M >= 0, dependent on the implementation
assert_fsm_1_stays_in_IDLE_state_if_error_is_asserted :

assert property ((error && (fsm_1_present_state == IDLE)) |-> ##1 (fsm_1_present_state == IDLE));

 
Figure 8. Assertions Required to Verify FSM Transition to IDLE State When Error Occurred 

 
 



 

 

IV. RESULTS 

Figure 9 shows the total number of bugs found using FPV and CBRV methodology for the error handling 

verification task of the lossless HW Decompression IP.  It is important to note that we deployed FPV methodology 

for error handling verification almost a quarter after the CBRV started.  Despite the late deployment of FPV, we had 

a very high Return on Investment (RoI) using this methodology.  The exhaustive nature of FPV found 75% of the 
overall error handling bugs.  We also did complexity analysis of the bugs identified using FPV and found that most 

of these bugs were complex and required multiple events to align correctly which would have been difficult to 

achieve using the CBRV methodology.  Out of the bugs found by CBRV methodology, we missed only 1% of the 

bugs because of missing formal checkers due to misunderstanding of the specification.  For completeness we 

developed these checkers and discovered the same bugs using FPV methodology.  The remaining 24% of the bugs 

were identified using FPV methodology as well.  However, due to its early deployment, these 24% of the bugs were 

first identified using CBRV methodology hence, we counted it as part of the bugs found by CBRV methodology. 
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Figure 9. Comparison of Bugs Found vs Methodology 

 

We used various formal coverage metrices (functional and code) and did iterative reviews of FPV test-plan to 
conclude our FPV activities.  We deployed various industry standard techniques and achieved 100% convergence 

for all our assertions.  Figure 10 shows the comparison of verification progress between FPV and CBRV.  This 

clearly reflects the challenges associated with the CBRV, some of these are complex test-bench development and 

directed/focused tests to exercise specific scenarios.     
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Figure 10. Error Handling Verification Progress vs Methodoloby 



 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we discussed the importance of error handling verification and its challenges associated with the 

constraint based random verification methodology.  Based on the lossless HW Decompression IP, we demonstrated 

the effectiveness of applying FPV to error handling verification.  We identified 75% of the error handling bugs in 

short time of twelve weeks compared to twenty-eight weeks of time in the constraint based random verification 
methodology.  Leveraging this methodology in the error handling verification of the decompression IP was one of 

the key factors to reach the verification quality metrics six weeks ahead of the planned tape-out date.  We strongly 

believe that this methodology will also provide similar schedule savings without increasing project budget for a 

wide variety of designs, especially those which involve industry standard protocols/interfaces (e.g., PCIe, AMBA, 

etc.). 

Future work includes deploying this methodology at System on Chip (SoC) to verify system level error handling 

requirements.  In addition, due to its exhaustive nature we believe FPV methodology can be very effective in 

security verification and fuzz testing. 
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