

Accelerating Error Handling Verification of

Complex Systems: A Formal Approach
Bhushan Parikh, Peter Graniello, Neha Rajendra

Intel Corporation

5000 W. Chandler Blvd,
Chandler, AZ 85226

Abstract-Error handling verification is one of the key phases in determining reliability of any embedded system. It

involves verifying that the system correctly detects and gracefully reports various errors. This is especially critical for

Smart Network Interface Cards (NICs) as they are usually located in an isolated environment and need to be continuously

online with a very little to no human interaction. Failure to report an error may expose security vulnerabilities such as

denial of service. Due to the technological advancement in recent years, the complexity of Smart NICs has increased,

resulting in a greater number of error scenarios. This has made the task of error handling verification even more

challenging using constraint based random verification (CBRV). In this paper we will demonstrate how leveraging

Formal Property Verification (FPV) can address these challenges using our work on error handling verification of a

hardware (HW) Decompression IP.

I. IMPORTANCE OF THE ERROR HANDLING VERIFICATION

Computer systems have achieved significant progress in the areas of technology, performance, and capability

during the last quarter century. These systems are now distributed systems instead of a standalone system which has
created several challenges to meet high Reliability requirement of 99.999% [2]. A reliable system does not silently

continue and deliver results that include corrupted data. Instead, it detects, reports and, if possible, corrects the

corruption.

Error handling is one of the key components in evaluating Reliability of the system. It is the process comprised of

anticipation, detection, and resolution of errors. Error handling ensures that the system has correctly identified and

reported the error. In addition, it guarantees that the system gracefully completes erroneous execution and stays

available for serving the next task, thus maintaining the normal flow of execution.

System errors

Undetectable errors Detectable errors

Soft errors
(errors that impact only

specific usage of the

system)

Hard errors
(errors due to which system
cannot be used. (e.g., non-

repairable cell in the memory))

Memory errors
(Single bit error/s in

memory cell/s due to
external energy

radiation/particles)

Specification (Spec)
violation errors

(errors due to violation
of the specification)

Programming errors
(Errors due to incorrect

programming/
configuration of the

system)

Figure 1. Classification of System Errors

As shown in Figure 1, system errors can be classified in two main categories, Undetectable and Detectable. Since

only detectable errors can be reported, handled, and corrected, handling of these errors falls in scope of the error

handling verification.

Categorization of detectable errors gives an idea of the vast possibilities that can result in an error which the

system needs to report, handle and, if possible, correct. This makes error handling verification extremely difficult to
plan, execute and deliver. In addition, any gaps/holes in verification will result in late breaking pre silicon bugs or

last-minute post silicon issues. We will use a lossless HW Decompression IP as an example to illustrate this.

II. CHALLENGES ASSOCIATED WITH ERROR HANDLING VERIFICATION

A HW Decompression IP consumes compressed data stream as input and produces uncompressed data. Figure 2

shows a block diagram of a conceptual compressed data stream.

Frame
header

Frame
size

Block_0
header

Block_0
payload

Frame
Checksum

Block_1
header

Block_1
payload

Block_n
header

Block_n
payload

Block
Type

[0:m-1] bits

Block
Size

[m:n-1] bits

Compression
level

[n:k-1] bits

Figure 2: Block diagram of a conceptual compressed data stream

The stream consists of various fields – Frame Header and Frame Size followed by 1 or more Block Header and

Block Payload pair and terminated with a Frame Checksum. Usually most of these fields are multibit fields. The

field widths and possible field values are determined by the targeted algorithm specification. In addition, some of
the values and combinations of these fields are marked as reserved for future use. For example, in RFC 1951

specification, block type is a two-bit field and has defined 2’b00, 2’b01, 2’b10 as valid values while 2’b11 as

reserved value [1]. The presence of any such reserved/undefined values or combinations in the compressed data

stream should be considered as a violation of the specification. It is the responsibility of HW Decompression IP to

detect and report such combinations as errors and gracefully assert completion of the task.

In the CBRV methodology, various compressed data streams are used as test stimulus to verify a lossless HW

Decompression IP. Hence, a Pre-Si Verification (PSV) engineer must identify the right uncompressed data that can

generate desired compressed data streams. Typically, various SW compressors are used to process the desired

uncompressed data and generate compressed data streams. The SW compressor comes with limitations, as listed

below, which becomes a major roadblock in verification of error detection capability of a lossless HW

Decompression IP.

1) It will only generate a subset of all possible legal encodings
2) It has subtle optimizations to improve performance which are not easy to reverse-engineer from the

implementation.

3) It is spec compliant and will not generate a compressed data stream with illegal encoding or field values.

One approach to address this is to use data generator – a utility that can produce desired compressed data stream

based on input data and some other knobs/options, but this requires additional time and resources for the

development and verification of such data generator. Also, it does not address the problem of defining and

executing various test-cases targeting numerous combinations of compressed data stream required to thoroughly

verify error detection task of error handling verification activity. To summarize, error handling verification of a

lossless Decompression IP is very challenging and may require months of effort/resources to complete it using

traditional CBRV methodology.

III. PROPOSED METHODOLOGY

Formal Property Verification (FPV) is a technique that is widely acknowledged and accepted for improving

validation effectiveness [3]. This methodology is commonly used to accomplish functional verification goals and

identify corner case bugs in the normal (i.e., non-error) functionality of the design. In contrast, we extended this

methodology for the error handling verification task of our lossless HW Decompression IP and completed the task in

half the number of weeks compared to CBRV. To present this methodology we will start with the high-level plan

for the error handling verification task, a brief discussion of the challenges associated with it followed by how

various FPV techniques can address the challenges.

A high-level plan for error handling verification is comprised of,

1) Error detection verification: verify that the system is detecting error correctly

2) Error reporting verification: verify that the system is reporting any detected error correctly
3) Graceful completion verification: verify that the system completed erroneous execution gracefully and is

ready for next task/request

A. Error detection verification

As previously seen, the biggest challenge with error detection verification of the decompression IP is to create

corrupt compressed data streams for the desired error condition. In FPV methodology one needs to specify only the

expected behavior for the given error condition instead of identifying the required stimulus to exercise the behavior

and the formal tool will ensure to exercise every possible stimulus. This makes FPV very fast and effective for error

detection verification.

Let’s understand this in a little more detail using an example. Consider the Block header field in Figure 2, it

contains the size of the block payload (BLOCK_SIZE). The maximum value of block payload

(BLOCK_MAX_SIZE) is defined in the targeted lossless compression standard specification (e.g., [4]). A spec

compliant and reliable HW Decompression IP is required to assert an error signal (e.g., block_max_size_error) when
it detects BLOCK_SIZE > BLOCK_MAX_SIZE.

In the CBRV methodology, the PSV team will need to test every single compressed stream which can result in

(BLOCK_SIZE > BLOCK_MAX_SIZE) condition. Unfortunately, this results in many test cases. With FPV, the

problem can be solved with two assertion properties as shown in Figure 3 - an assertion to detect the (BLOCK_SIZE

> BLOCK_MAX_SIZE) error condition and an assertion to detect the block_max_size_error signal. Here the

formal tool identifies all possible conditions for (BLOCK_SIZE > BLOCK_MAX_SIZE) and verifies the respective

error signal trigger.

parameter BLOCK_MAX_SIZE = BLOCK_MAX_SIZE_NUMBER;
parameter BLOCK_MAX_SIZE_WIDTH = $clog2(BLOCK_MAX_SIZE+1);

logic [BLOCK_MAX_SIZE_WIDTH-1:0] block_size;
logic block_max_size_error;

assert_block_max_size_error_when_detected :
assert property ((block_size > BLOCK_MAX_SIZE) |-> ##[0:M] block_max_size_error);

//M >= 0, dependent on the implementation
assert_block_max_size_error_only_when_detected :

assert property (block_max_size_error |-> (block_size > BLOCK_MAX_SIZE));

Figure 3. Assertions Required to Verify a Spec Error

The TABLE I shows some more examples of complex spec errors for which we have leveraged FPV methodology

to verify that the lossless HW Decompression IP detects these errors correctly.

TABLE I

SPEC ERRORS AND THEIR BRIEF EXPLANATION

Spec error Explanation

Unbalanced Huffman tree The Huffman tree used for compression is not balanced

Distance out of range The copy location in token is too far behind

Received incorrect code The code does not match with encoding of any symbol from the compressed stream

Invalid block header The block header field/s description does not match with the specification

Invalid encoding Decoded symbol value does not match any value specified in the specification

Incomplete stream The compressed stream is not complete

Padding byte error Padding bytes in the compressed stream are corrupted

B. Error Reporting Verification

To reduce the complexity of the error reporting structure for the system, we implemented a scheme that utilizes a

single error valid signal accompanied by an 8-bit error code bus reflecting an error code for the targeted error as

shown in Figure 4. Thus, the task of error reporting verification required verification of 256 different test-cases.

HW
Decompression

IP

uncompressed data stream
compressed

data
stream

error_code_valid

8 bit error_code

Figure 4. High Level Block Diagram of the HW Decompression IP with Error Code Valid and Error Code Bus

Like the verification of error detection, here also PSV will need to generate many tests to cover the breadth of

conditions to verify error reporting. With FPV, the two assertions shown in Figure 5 would sufficiently complete

the error reporting verification for any given error condition (ERROR_CONDITION_N, where N >= 0).
It is important to note that when using FPV methodology the verification is more exhaustive. For example,

assertions defined in Figure 3 do not only check that error is asserted when there is an error condition but also verify

that error is asserted if and only if error condition is seen. Similarly, assertions defined in Figure 5 check that the

error code is generated if and only if its respective error condition is observed in addition to the generated error code

is correct.

parameter ERROR_CODE_BUS_WIDTH = 8;
parameter ERROR_CODE_INCOMPLETE_BLOCK = 255;
parameter ERROR_CONDITION_INCOMPLETE_BLOCK = INCOMPLETE_BLOCK_DETECTED;

logic [ERROR_CODE_BUS_WIDTH -1:0] error_code;
logic error_incomplete_block;
logic error_condition;

assert_error_code_incomplete_block_when_detected_error_condition_incomplete_block_detected :
assert property ((error_condition == ERROR_CONDITION_INCOMPLETE_BLOCK) |->

##[0:M] ((error_code == ERROR_CODE_INCOMPLETE_BLOCK) && (error_incomplete_block)));
//M >= 0, dependent on the implementation

assert_error_code_incomplete_block_only_when_error_condition_incomplete_block_detected :
assert property (((error_code == ERROR_CODE_INCOMPLETE_BLOCK) && (error_incomplete_block)) |->

(error_condition == ERROR_CONDITION_INCOMPLETE_BLOCK));

Figure 5. Assertions Required for Verifying an Error Code

C. Graceful Completion Verification

Now that the error detection and reporting for all errors are verified, the next step in error handling verification is
to ensure that the system will gracefully exit to a known (or an IDLE) state and be serviceable. This is a very

important reliability aspect for network accelerators such as a lossless HW Decompression IP. For example, if an

attacker gets access to a compressed stream that can put the system in an unrecoverable (also known as hang or an

error state where it always produces incorrect output) state then he/she can bring down the entire network by

constantly sending the bad compressed stream and keeping the system in hang state thus making it unavailable for

rest of the users. This is known as Denial of Service (DoS) attack. Therefore, it is essential for the lossless HW

Decompression IP to complete its task and return to a known state in the event of an erroneous stream.

As we have seen in the previous section our design of lossless HW Decompression IP has a total of 255 error

codes. Now for any of the 255 possible errors, an error can occur at any cycle and the timing of the error assertion is

an asynchronous event with respect to the rest of the design functionality. Also, there may be cases where more

than a single error is present. Hence, it may require weeks/months of random regressions and coverage analysis to
verify only a subset of the possibilities and impossible to verify all possible combinations without missing the IP

development schedule using the CBRV methodology.

Formal tools have the capability to create cut-points in the design i.e., disconnect any signal/net from its driver

and drive that signal to every possible value during the formal run. This can be very powerful in verifying graceful

completion. To understand this better let’s consider Figure 6. It shows a simplified block diagram of the lossless

HW Decompression IP error handling logic along with the control logic as a Finite State Machine (FSM) diagram

on the right.

HW Decompression IP

IDLE

STATE
_B

STATE
_C

STATE
_A

event_0

event_1

event_2

event_4

error

error

error

STATE
_D

error

event_3

error

STATE
_E

Decode
Logic

Error
Detection

Logic

Control
Logic

compressed
data

stream

uncompressed
data

stream

error

error_code

error

Figure 6. Simplified Block Diagram of the Lossless HW Decompression IP Error Detection and Control Logic

To verify that the FSM returns to the IDLE state after an error condition, the CBRV methodology requires the

following:

1) Develop a test that can cause the error signal to assert.

2) Add hooks to the test such that the error signal can only assert when the FSM is in the specific state.

3) Repeat this for all states of the FSM.

4) Develop and analyze functional coverage to verify that all possible cases are covered.

In the FPV methodology, a cut-point can be created for the error signal as shown in Figure 7. The formal tool

then has the freedom to assert the error signal whenever it is required. If there are no assumptions added to the error

signal, the formal tool will exercise all possible combinations. Using this strategy, only two assertions, shown in
Figure 8, are needed to verify graceful completion logic of the design.

HW Decompression IP

Decode
Logic

Error
Detection

Logic

Control
Logic

compressed
data

stream Formal tool
drives error

signal
(1'b0/1'b1)

uncompressed
data

stream

error

error_code

Figure 7. Simplified Block Diagram of the Lossless HW Decompression IP Error Detection with Cut-Point

//Formal environment setup to create cut point for signal error

assert_fsm_1_transitions_to_idle_state_after_error_assertion :
assert property ($rose(error) |-> ##[0:M] (fsm_1_present_state == IDLE));

//M >= 0, dependent on the implementation
assert_fsm_1_stays_in_IDLE_state_if_error_is_asserted :

assert property ((error && (fsm_1_present_state == IDLE)) |-> ##1 (fsm_1_present_state == IDLE));

Figure 8. Assertions Required to Verify FSM Transition to IDLE State When Error Occurred

IV. RESULTS

Figure 9 shows the total number of bugs found using FPV and CBRV methodology for the error handling

verification task of the lossless HW Decompression IP. It is important to note that we deployed FPV methodology

for error handling verification almost a quarter after the CBRV started. Despite the late deployment of FPV, we had

a very high Return on Investment (RoI) using this methodology. The exhaustive nature of FPV found 75% of the
overall error handling bugs. We also did complexity analysis of the bugs identified using FPV and found that most

of these bugs were complex and required multiple events to align correctly which would have been difficult to

achieve using the CBRV methodology. Out of the bugs found by CBRV methodology, we missed only 1% of the

bugs because of missing formal checkers due to misunderstanding of the specification. For completeness we

developed these checkers and discovered the same bugs using FPV methodology. The remaining 24% of the bugs

were identified using FPV methodology as well. However, due to its early deployment, these 24% of the bugs were

first identified using CBRV methodology hence, we counted it as part of the bugs found by CBRV methodology.

75%

25%

0%

20%

40%

60%

80%

100%

FPV CBRV

R
T

L
 b

u
g

s
fo

u
n

d

Methodology

Percentage of RTL bugs found vs Methodology

Figure 9. Comparison of Bugs Found vs Methodology

We used various formal coverage metrices (functional and code) and did iterative reviews of FPV test-plan to
conclude our FPV activities. We deployed various industry standard techniques and achieved 100% convergence

for all our assertions. Figure 10 shows the comparison of verification progress between FPV and CBRV. This

clearly reflects the challenges associated with the CBRV, some of these are complex test-bench development and

directed/focused tests to exercise specific scenarios.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

E
rr

o
r

h
an

d
lin

g
 v

er
if

ic
at

io
n

 p
ro

g
re

ss

Work Week

Error handling verification progress vs Methodology
(normalized to one engineer)

CBRV FPV

Figure 10. Error Handling Verification Progress vs Methodoloby

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the importance of error handling verification and its challenges associated with the

constraint based random verification methodology. Based on the lossless HW Decompression IP, we demonstrated

the effectiveness of applying FPV to error handling verification. We identified 75% of the error handling bugs in

short time of twelve weeks compared to twenty-eight weeks of time in the constraint based random verification
methodology. Leveraging this methodology in the error handling verification of the decompression IP was one of

the key factors to reach the verification quality metrics six weeks ahead of the planned tape-out date. We strongly

believe that this methodology will also provide similar schedule savings without increasing project budget for a

wide variety of designs, especially those which involve industry standard protocols/interfaces (e.g., PCIe, AMBA,

etc.).

Future work includes deploying this methodology at System on Chip (SoC) to verify system level error handling

requirements. In addition, due to its exhaustive nature we believe FPV methodology can be very effective in

security verification and fuzz testing.

REFERENCES
[1] P. Deutsch, “DEFLATE Compressed Data Format Specification version 1.3”, https://tools.ietf.org/html/rfc1951, 1996.

[2] Hoang Pham, " Handbook of Reliability Engineering", 2003, p. 201.

[3] Erik Seligman, Carl Dreyer, Ken Hare, Raman Nayyar, "Zero Escape Plans: Tying Together Design, Simulation and Formal Methods for

Bulletproof Stepping Validation", DVCON USA, February 2008.

[4] Y. Collet, \LZ4: Extremely Fast Compression Algorithm", https://lz4.github.io/lz4/, 2011

https://tools.ietf.org/html/rfc1951

