
Accelerating Complex System Simulation using 
Parallel SystemC and FPGAs

Stanislaw Kaushanski, MINRES Technologies GmbH, Duisburg, Germany (stas@minres.com)

Johannes Wirth, ESA Group, TU Darmstadt, Darmstadt, Germany (wirth@esa.tu-darmstadt.de)

Eyck Jentzsch, MINRES Technologies GmbH, Munich, Germany (eyck@minres.com)

Andreas Koch, ESA Group, TU Darmstadt, Darmstadt, Germany (koch@esa.tu-darmstadt.de)

mailto:stas@minres.com
mailto:wirth@esa.tu-darmstadt.de
mailto:eyck@minres.com
mailto:koch@esa.tu-darmstadt.de


Classical SoC Development

• Sequential workflow

• Late firmware integration

• Late issue discovery

• Protracted timelines

time-to-market

Hardware & VP 
development

Software 
development

Testing/Integration



The Shift-Left Concept

• Virtual Prototypes (VPs)
• Very early availability 

• Powerful debugging tools

• No resource limitations

Hardware & VP 
development

Software 
development

Testing/Integration

time-to-market

• Physical Prototypes (FPGAs)
• Real hardware interaction

• Very fast simulation

• Accurate timing 



Limitations

• Virtual Prototype: 
• Single-threaded SystemC bottlenecks complex systems

• Model accuracy with respect to Hardware

• Simulation Trade-off: Speed vs. Accuracy

• Physical Prototype: 
• FPGA simulation requires complete synthesizable RTL



RAVEN as a solution



Coarse-Grain 
Multi-Thread 

LT-SystemC Simulation

Conventional 
Single-Thread SystemC 

Simulation

Hybrid Simulation 
Virtual Platform + FPGA

RAVEN Infrastructure
On-premise and in the Cloud





DUT integration process

• Step 1: Analyze Design to determine partition boundaries.
• Minimal interactions between partitions to prevent bottlenecks.

• Consider computational load within partitions for meaningful parallelization.

• Step 2: Partition the Design
• Divide the design into partitions.

• Connect open connections to RAVEN interthread connectors.

• Step 3: FPGA Integration
• Generate wrapper for data exchange and synchronization.



Automation with RavenDSL

• Automating the Integration
• RavenDSL to automate the integration process.

• Reducing manual effort and minimizing errors.

• RavenDSL
• Describes RTL interfaces and signal transitions.

• RavenDSL Compiler
• Tool-flow automatically creates hardware and software components.

• TaPaSCo Framework for FPGA bitstream generation.

• Optionally adjust FPGA synthesis. 



RavenDSL example



Scalability

• Challenge:
• High upfront costs for FPGA resource availability.

• Waiting times for FPGA slots.

• RAVEN's Solution:
• Cloud-Ready Infrastructure.

• No upfront investments in FPGAs.

• No Waiting Times.

• GUI for user-friendly cloud usage.

• Flexibility: scale resources as needed.



RAVEN Simulation Performance





RAVEN performance analysis



RAVEN performance analysis



Showcase Setup: Keyword Spotting System
• Audio Data Pre-

processing: Performed 
in Virtual Prototype

• HW ML Accelerator on 
FPGA

• Live Demonstration 
at Our Booth



Conclusion

• Easy parallel and hybrid simulation
• Simple partitioning

• Automated RTL wrapper generation

• Low entry barrier for hybrid simulation 

• Highly flexible and scalable through unified use of on-premise and 
Cloud resources

• Significant Speed Gains for large Virtual Prototypes 
as well as Complex HW Blocks



Questions


	Slide 1: Accelerating Complex System Simulation using Parallel SystemC and FPGAs
	Slide 2: Classical SoC Development
	Slide 3: The Shift-Left Concept
	Slide 4: Limitations
	Slide 5: RAVEN as a solution
	Slide 6
	Slide 7
	Slide 8: DUT integration process
	Slide 9: Automation with RavenDSL
	Slide 10: RavenDSL example
	Slide 11: Scalability
	Slide 12: RAVEN Simulation Performance
	Slide 13
	Slide 14: RAVEN performance analysis
	Slide 15: RAVEN performance analysis
	Slide 16: Showcase Setup: Keyword Spotting System
	Slide 17: Conclusion
	Slide 18: Questions

