Accelerate Verification of Complex esion s v A DR
DVCON

Hardware Algorithms using MATLAB =~ fSececne,

MMMMMMMMMMMMMM

based SystemVerilog DPIs e e

O
Samuele Candido, Infineon Technologies Dresden AG & Co. KG < |nf| neon
15.10.2025

(infineon

Agenda

Introduction

SystemVerilog DPI

RADAR SoC example

Translate MATLAB code into DPI components
Challenges

Next steps and lessons learned

o A whE

2025

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
EEEEEEEEEEEEEEEEE

Introduction

In July 2024, | was assigned the task of integrating MATLAB functions into a SV/UVM
testbench

This Engineering Paper is going through all steps needed to create and use SystemVerilog
DPIs generated from MATLAB code

Case study: RADAR SoC with embedded DSP

(infineon

2025

DESIGN AND VERIFICATION™

DVCOIN

NNNNNNNNNNNNNNNNNNNNNNN

MUNICH, GERMANY
DDDDDDDDDDDDDDDDD

SystemVerilog DPI

Direct Programming Interface (DPI)

Interface SystemVerilog with foreign language code
« Foreign language functions can be imported and called from SystemVerilog
« SystemVerilog functions can be exported and called from a foreign language
Reuse already existing code

DPI component

C files and headers generated from MATLAB code
SystemVerilog package with “import DPI” declarations
In this context: these files are generated by the MATLAB function dpigen

(infineon

2025

DESIGN AND VERIFICATION™

DVCOIN

NNNNNNNNNNNNNNNNNNNNNNN

MUNICH, GERMANY
DDDDDDDDDDDDDDDDD

| | Cinfineon
RADAR SoC example — quick overview (1)

Radar for consumer electronics with embedded DSP
* Motion, gesture, and target detection
« Target position, magnitude and velocity

« All operations are performed in fixed-point format (different Q formats used)

« To align between different formats, multiple operations can be configured (sign extension, zero
extension, LSB extension, etc.)

* Intotal, 15 algorithms involved to get the final result (translated into 15 DPI components)

2025

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DDDDDDDDDDDDDDDDD

RADAR SoC example — quick overview (2)

« Simplified processing chain:

FINAL
RESULTS

g MTI DPI

MTI (Moving
Target
Indicator)

CFAR
Target Angle (Constant
Extraction Estimation False Alarm
: : Rate)

(infineon

2025
DESIGN AND \M@Nm

DVCON

CONFERENCE AND EXHIBITION

MMMMMMMMMMMM
nnnnnnnnnnnnnnnnn

RADAR SoC example — advantages of MATLAB based SV DPIs

Transition from SystemVerilog floating point model to MATLAB fixed point models

RADAR SoC DSP performs many operations, which can be easily implemented with MATLAB

Verification started with a MATLAB floating point model generating expected results
(limited set of configuration)

To allow randomization, the verification team implemented a SystemVerilog model

In the second phase of the project, the SystemVerilog models has been replaced by the
MATLAB fixed point model (used to generate the SystemVerilog DPISs)

Examples: Matrix operations and calculation of trigonometric functions

MATLAB provides functions and tools for fixed point implementation (high level of abstraction)

Complexity and number of feature in RADAR SoC continuously incremented over time

Effort to extend and maintain the SystemVerilog model significantly increased
Verification team was provided with a reference model — reuse of models from concept
team

(infineon

2025

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DDDDDDDDDDDDDDDDD

Translate MATLAB code into DPI components (1)

/

Fixed-Point
Algorithm

MATLAB

Algorithm
wrapper

~

dpigen

L

Algorithm

DPI

{

L g

SV/UVM

Testbench

(infineon

2025

DESIGN AND VERIFICATION™

DVLC N

CONFERENCE AND EXHIBITION

MMMMMMMMMMMM
DDDDDDDDDDDDDDDDD

Translate MATLAB code into DPlI components (2)

1. The given fixed point algorithm was embedded in a wrapper function

- Align the arguments datatypes/format, create complex numbers, etc.

2. Sanity test to check that no errors have been introduced in the wrapper

3. Wrapper function converted into a DPI component using the MATLAB dpigen function

(infineon

« Some arguments: Input and output file locations, type of the input arguments, and a configuration

object

dpigen -args {int32(0)} -c alg matlab wrapper.m -d alg dpi -config cfg dpi

;‘/’ |

MATLAB
Fixed-Point gl Algorithm LS
Algorithm wrapper

\\._

)

C

Algorithm i
DPI

SV/UVM

4 Testbench

2025

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

MMMMMMMMMMMM
DDDDDDDDDDDDDDDDD

| Cinfineon
Translate MATLAB code into DPI components (3)

« The configuration object allows to customized a number of aspects of the generated DPI (target
language, code appearance, debugging options, replacement with custom code, etc.)

* QOutput of the dpigen call:

« C code and header files reflecting the functionality implemented in the MATLAB function
« SystemVerilog package containing the import “DPI-C” declaration

4. Integrate the DPI call in the testbench

« Compile C files and SystemVerilog package with Xcelium

« Call the functions from the testbench

/- ™~
- MATLAB

Fixed-Point gl Algorithm L
Algorithm wrapper

=

_)

C

Algorithm i
DPI

SV/UVM

g Testbench

2025

DESIGN AND VERIFICATION™

DVCOIN

NNNNNNNNNNNNNNNNNNNNNNN

EEEEEEEEEEEEEE
DDDDDDDDDDDDDDDDD

infineon

Translate MATLAB code into DPlI components (4)

% Implementation of an algorithm in MATLAB
function theta = alg matlab (phase_ difference)
% body of the function

end

% Wrapper for the MATLAR function
function theta = alg matlab wrapper (phase diff)
% reinterpret input (from int32 to Q format)
phase diff g format = reinterpretcast (phase diff,numerictype(l,32,23));
% call MATLAB function -
theta = alg_matlab (phase diff g format);
end

I dpigen

-args {int32(0)} -c alg matlab wrapper.m -d alg dpi -config cfg_dpil

chandle objhandle = null;

objhandle = DPI_alg_initialize (cbjhandle);
DPI_alg output(objhandle,phase_diff tb,theta_tb);
DPI_alg terminate (objhandle);

2025

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

package alg dpi pkg;

// Declare imported C functions

import "DPI-C" function chandle DPI_alg initialize (input chandle existhandle);
import "DPI-C" function chandle DPI_alg reset(input chandle objhandle,input int
phase diff, output int theta);

import "DPI-C" function void DPI_alg_output (input chandle objhandle,input int
phase_diff, output int theta);

import "DPI-C" function woid DPI_alg_ terminate (input chandle existhandle);

endpackage alg dpi pkg

11

infineon
Challenges k/

. Successful and efficient usage of the DPI components is strongly dependent on the maturity of
the MATLAB model
« If the root of the issue is in the MATLAB code itself, debugging is complex
. Very low visibility into the DPI component
« Logging and reporting intermediate results from within the DPI is not easy
. Not all MATLAB code can be translated into a DPI component (e.g. changing types through
assignments, limited support for FOR loop indexes with unknown size)
« Multiple iterations with the algorithm team to solve these issues and update the code
. Matrices are not supported as DPI argument
* Inthe RADAR SoC, most algorithms were working with matrices and many conversions
matrix <-> vector were needed
. Datatype difference between MATLAB and SystemVerilog 5005

* Many adaptions and reinterpretation of the arguments needed SV R

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DDDDDDDDDDDDDDDDD

Next steps and lessons learned

Start early in the project with the reference model (high confidence that the model is correct)

Avoid the question “Is the bug in the RTL, in the MATLAB code, or in the testbench?”

Provide guidelines to the developer of the MATLAB function

Align on the datatypes of the arguments, provide information about how to generate the
DPI (avoid iterations due to unsupported code), etc.

Improve visibility from within the DPI component. Examples:

Create log files with input data which can be easily used in a MATLAB test
Add interesting variables to the function outputs -> only feasible for simple functions

(infineon

2025

DESIGN AND VERIFICATION™

DVCOIN

NNNNNNNNNNNNNNNNNNNNNNN

MUNICH, GERMANY
DDDDDDDDDDDDDDDDD

(infineon

