
1

Samuele Candido, Infineon Technologies Dresden AG & Co. KG

15.10.2025

Accelerate Verification of Complex 

Hardware Algorithms using MATLAB 

based SystemVerilog DPIs



2

Agenda

1. Introduction

2. SystemVerilog DPI

3. RADAR SoC example

4. Translate MATLAB code into DPI components

5. Challenges

6. Next steps and lessons learned



3

Introduction

• In July 2024, I was assigned the task of integrating MATLAB functions into a SV/UVM 

testbench

• This Engineering Paper is going through all steps needed to create and use SystemVerilog

DPIs generated from MATLAB code

• Case study: RADAR SoC with embedded DSP



4

SystemVerilog DPI

• Direct Programming Interface (DPI)

• Interface SystemVerilog with foreign language code

• Foreign language functions can be imported and called from SystemVerilog

• SystemVerilog functions can be exported and called from a foreign language

• Reuse already existing code

• DPI component

• C files and headers generated from MATLAB code

• SystemVerilog package with “import DPI” declarations

• In this context: these files are generated by the MATLAB function dpigen



5

RADAR SoC example – quick overview (1)

• Radar for consumer electronics with embedded DSP

• Motion, gesture, and target detection

• Target position, magnitude and velocity

• All operations are performed in fixed-point format (different Q formats used)

• To align between different formats, multiple operations can be configured (sign extension, zero 

extension, LSB extension, etc.)

• In total, 15 algorithms involved to get the final result (translated into 15 DPI components)



6

RADAR SoC example – quick overview (2)

• Simplified processing chain:

RX + 

ADC

MTI (Moving 

Target 

Indicator)

RFFT

CFFT

CFAR 

(Constant 

False Alarm 

Rate)

Target 

Extraction

Angle 

Estimation

MTI DPI
RFFT 

DPI

CFFT 

DPI

CFAR 

DPI
AE DPI

FINAL 

RESULTS

TARGET 

EXTRACTION



7

RADAR SoC example – advantages of MATLAB based SV DPIs

• Transition from SystemVerilog floating point model to MATLAB fixed point models

• Verification started with a MATLAB floating point model generating expected results 

(limited set of configuration)

• To allow randomization, the verification team implemented a SystemVerilog model

• In the second phase of the project, the SystemVerilog models has been replaced by the 

MATLAB fixed point model (used to generate the SystemVerilog DPIs) 

• RADAR SoC DSP performs many operations, which can be easily implemented with MATLAB

• Examples: Matrix operations and calculation of trigonometric functions

• MATLAB provides functions and tools for fixed point implementation (high level of abstraction)

• Complexity and number of feature in RADAR SoC continuously incremented over time

• Effort to extend and maintain the SystemVerilog model significantly increased 

• Verification team was provided with a reference model – reuse of models from concept 

team



8

Translate MATLAB code into DPI components (1)



9

Translate MATLAB code into DPI components (2)

1. The given fixed point algorithm was embedded in a wrapper function

• Align the arguments datatypes/format, create complex numbers, etc.

2. Sanity test to check that no errors have been introduced in the wrapper

3. Wrapper function converted into a DPI component using the MATLAB dpigen function

• Some arguments: Input and output file locations, type of the input arguments, and a configuration 

object 

1

2

3



10

Translate MATLAB code into DPI components (3)

• The configuration object allows to customized a number of aspects of the generated DPI (target 

language, code appearance, debugging options, replacement with custom code, etc.) 

• Output of the dpigen call:

• C code and header files reflecting the functionality implemented in the MATLAB function

• SystemVerilog package containing the import “DPI-C” declaration

4. Integrate the DPI call in the testbench

• Compile C files and SystemVerilog package with Xcelium

• Call the functions from the testbench 

4



11

Translate MATLAB code into DPI components (4)

TEST



12

Challenges

1. Successful and efficient usage of the DPI components is strongly dependent on the maturity of 

the MATLAB model

• If the root of the issue is in the MATLAB code itself, debugging is complex

2. Very low visibility into the DPI component

• Logging and reporting intermediate results from within the DPI is not easy

3. Not all MATLAB code can be translated into a DPI component (e.g. changing types through 

assignments, limited support for FOR loop indexes with unknown size)

• Multiple iterations with the algorithm team to solve these issues and update the code

4. Matrices are not supported as DPI argument

• In the RADAR SoC, most algorithms were working with matrices and many conversions 

matrix <-> vector were needed

5. Datatype difference between MATLAB and SystemVerilog

• Many adaptions and reinterpretation of the arguments needed



13

Next steps and lessons learned 

• Start early in the project with the reference model (high confidence that the model is correct)

• Avoid the question “Is the bug in the RTL, in the MATLAB code, or in the testbench?”

• Provide guidelines to the developer of the MATLAB function

• Align on the datatypes of the arguments, provide information about how to generate the 

DPI (avoid iterations due to unsupported code), etc.

• Improve visibility from within the DPI component. Examples:

• Create log files with input data which can be easily used in a MATLAB test

• Add interesting variables to the function outputs -> only feasible for simple functions 



14


