

Accelerate Functional Coverage Closure Using Machine-Learning-Based Test Selection

Jakub Pluciński, Łukasz Bielecki, Robert Synoczek (Nokia)

Emelie Andersson, Antii Löytynoja, Cristian Macario (MathWorks)

Premise

- Constrained random verification.
- Some coverage points are being hit extremely frequently.
- Solution: reliably producing stressful tests with most stimuli veriety.
- Use of autoencoders to reduce the numer of simulations.

Co-simulation flow (1)

- Environment based on co-simulation flow
- Matlab was used as DUT input/output generator

Co-simulation flow (2)

Test selector

• Dissimilar tests tend to hit dissimilar functional coverage events

Method evaluation (1)

- Multiple machine learning methods tested.
- Supervised and unsupervised.
- Supervised:
 - Support Vector Machine (SVM)
 - Decision Trees
 - Random Forest
 - Simple Neural Networks
 - Long-Short Term Memory (LSTM) networks

Method evaluation (2)

- Unsupervised:
 - Factorial Analysis of Mixed Data (FAMD)
 - T-distributed Stochastic Neighbour Embedding (t-SNE)
 - Uniform Manifold Approximation and Projection (UMAP)
- The problem was later redefined as an **anomaly detection** problem

Autoencoder (1)

- Simple fully connected autoencoder
- Layer size based on numer of inputs
- Inputs normalized
 - Continuous 0-1 min/max scaling
 - Discrete one-hot encoding
- MSE loss for training
- Processing in batches
- Transfer learning is utilized

Autoencoder (2)

Autoencoder (3)

Thresholding

- Two thresholding methods proposed: Fixed and MMSE
- Fixed keeps given percentage of tests
- Moving Mean Square Error (MMSE) based on previous training MSE
- MMSE changes with each batch of tests

Evaluation

- DUT: Physical Uplink Shared Channel (PUSCH) IP estimation block
- Thresholds: Fixed 25%, Fixed 50% and MMSE
- Batches: 25, 50, 75, 100
- Coverage goal set to 67% due to testbench limitations

Results (1)

Results (2)

Conclusions and next steps

- First ML and co-simulation flow tested on commercial IP
- Generic and applicable in software and hardware
- Improvement in numer of simulations for each threshold
- Full flow needs to be improved
- Deeper autoencoder architectures should be tested
- The system will be tested on bigger IPs.

Questions

