
AI Pair or Despair Programming
Using Aider to build a VIP with UVM-SV and PyUVM

André Winkelmann, Verilab

Damir Ahmetovic Ignjic, Verilab

AI Reshaping Industries

• Coding assistants becoming part of software development
• E.g. Github Copilot, Claude Code, Aider, Cursor, …

• Use cases
• Simple code completions

• Add new functionality

• Refactor code

• Complete new files

• Entire projects from scratch

• What about DV?

Motivation

• LLMs are great at generating Python code

• UVM-SV is the defacto standard for DV

Investigated questions

1. How effective is generative AI at producing cocotb+PyUVM code
compared to UVM-SV?

2. Is generative AI mature enough to assist DV engineers in creating
complex VIP, or is its utility limited to simpler code editing tasks?

Experimental Dimensions

• LLM Provider
• Google: gemini-2.5-pro-preview-06-05

• Anthropic: claude-opus-4-20250514

• OpenAI: o3

• Verification Methodology
• SystemVerilog using UVM

• Python using cocotb + PyUVM

• Coding Conventions
• Without additional coding conventions

• With additional coding conventions

Aider

• “AI pair programming in your terminal”

• Selected Aider for the paper as it allows scripting its use

• Systematically test all model and configuration permutations

VIP Generation Prompts

• UVM-SV: Create under vips/apb directory a production-quality UVM-
1.2 SystemVerilog VIP for the AMBA APB3 protocol. The VIP should
include all standard UVM components plus a comprehensive
sequence library, a functional coverage model and protocol checks
implementing the entire APB3 specification.

• PyUVM: Create under vips/apb directory a production quality PyUVM
VIP for the AMBA APB3 protocol. The VIP should include all standard
UVM components plus a comprehensive sequence library, a
functional coverage model and protocol checks implementing the
entire APB3 specification.

TB Generation

• Also asked to generate a TB using the APB VIP

• Simple APB passthrough DUT given (not generated)

MST_PCLK SLV_PCLK
MST_PRESETn SLV_PRESETn
MST_PADDR SLV_PADDR
MST_PSEL SLV_PSEL
MST_PENABLE SLV_PENABLE
MST_PWRITE SLV_PWRITE
MST_PWDATA SLV_PWDATA
MST_PRDATA SLV_PRDATA
MST_PREADY SLV_PREADY
MST_PSLVERR SLV_PSLVERR

Result Evaluation

• Review of the generated VIP code

• Syntactic correctness & elaboration

• Iteration count VIP

• Iteration count TB+VIP

• Functional correctness

• LLM Costs

Review of the generated VIP code

• UVM-SV with and without conventions
• Surprise in differences of generated code across LLMs

• Conventions improve structural quality

• Risk of loss of functionality with conventions

• Protocol versions are a common pitfall (APB3 vs. APB4)

• Coverage quality varies greatly

• Reset and timing are weak points

• Sequence libraries show promise

• Convention: Use the covergroup sample() method to collect coverage

Code Convention Influence (1)

With convention

covergroup apb_cg with function

 sample(apb_transaction trans);

Without convention

covergroup apb_cg;

• Convention: Use prefix_ and _postfix to delineate name types

Code Convention Influence (2)

With convention

virtual apb_if m_vif;

apb_config m_config;

Without convention

virtual apb_if vif;

apb_config cfg;

• Convention: Use a begin-end pair to bracket conditional statements

Code Convention Influence (3)

With convention

if (!...::get(this, "", "cfg", m_cfg)) begin

 `uvm_fatal("NOCFG", "…")

end

Without convention

if (!...::get(this, "", "cfg", cfg))

 `uvm_fatal("NOCFG", "…")

Syntactic correctness

• Tested SV-UVM static compile, elaboration

• Mypy code analyzer for PyUVM

• No LLM first time right

Number of iterations

0

1

2

3

automatic

manual

UVM-SV PyUVM
Anthropic

UVM-SV PyUVM
Google

UVM-SV PyUVM
OpenAI

Iterations for first Simulation

• UVM-SV similar low effort for first simulation

• PyUVM needed lots and lots of iterations with mixed results

• Google run, Anthropic aborted, OpenAI very slow to respond

Number of iterations

0

5

10

15

20

25

30

35

automatic

manual

UVM-SV PyUVM
Anthropic

UVM-SV PyUVM
Google

UVM-SV PyUVM
OpenAI

Observations Reaching Simulation Readiness

• Multiple runs of the same bug fix → different results
• Like throwing a dice

• All LLMs work like trial and error
• Thinking output: „Let’s try xyz and see if that fixes the issue.“

• Issues working with PyUVM
• LLMs seem to guess what a Pythonic syntax might be compared to UVM-SV

• Had a lot of trouble with factory and config database

• Enum usage like UVM_ACTIVE

• LLM attempts to use try … except blocks to fix coding issues

Waveform Analysis

UVM-SV PyUVM

Google - PREADY, PSLVERR undriven
- Not waiting on reset

+ No signals X or Z
- Only read transactions

Anthropic + No signals X or Z
+ Written matches read data
o Memory model

--- No waves analyzed
--- Aborted compile/elab

OpenAI + No signals X or Z
o Memory model
- Not waiting on reset

--- All signals Z
--- Missing DUT hookup code

Cost Analysis - VIP generation

Anthropic Google OpenAI

UVM-SV no conv 0.88 0.08 0.10

UVM-SV with conv 0.84 0.13 0.09

PyUVM no conv 0.92 0.08 0.06

PyUVM with conv 0.85 0.10 0.11

• Cost to generate VIP only

[in USD]

Cost Analysis - Overall

Anthropic Google OpenAI

UVM-SV no conv 8.35 0.62 0.98

PyUVM no conv 29.94 6.76 1.06

• Cost to generate VIP, fix VIP, generate TB, fix TB and simulation

[in USD]

Conclusion

• UVM-SV code generation more mature than PyUVM out of the box

• UVM-SV generation can be used for serious DV work
• Given detailed prompts

• Add code conventions to fit company rules

• Great help for debug to get ideas

• Any LLM output needs experienced engineer to cross check results
• Otherwise LLM might use try … except, comment out code or disable features

• PyUVM needs more research
• Which context, rules, conventions need to be given

Questions

	Slide 1: AI Pair or Despair Programming Using Aider to build a VIP with UVM-SV and PyUVM
	Slide 2: AI Reshaping Industries
	Slide 3: Motivation
	Slide 4: Experimental Dimensions
	Slide 5: Aider
	Slide 6: VIP Generation Prompts
	Slide 7: TB Generation
	Slide 8: Result Evaluation
	Slide 9: Review of the generated VIP code
	Slide 10: Code Convention Influence (1)
	Slide 11: Code Convention Influence (2)
	Slide 12: Code Convention Influence (3)
	Slide 13: Syntactic correctness
	Slide 14: Iterations for first Simulation
	Slide 15: Observations Reaching Simulation Readiness
	Slide 16: Waveform Analysis
	Slide 17: Cost Analysis - VIP generation
	Slide 18: Cost Analysis - Overall
	Slide 19: Conclusion
	Slide 20: Questions

