(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Al Pair or Despair Programming
Using Aider to build a VIP with UVM-SV and PyUVM

André Winkelmann, Verilab

Damir Ahmetovic Ignjic, Verilab

veriab::

Al Reshaping Industries

* Coding assistants becoming part of software development
* E.g. Github Copilot, Claude Code, Aider, Cursor, ...

* Use cases
* Simple code completions
* Add new functionality
e Refactor code
 Complete new files
e Entire projects from scratch

e What about DV?

Motivation

* LLMs are great at generating Python code
e UVM-SV is the defacto standard for DV

Investigated questions

1. How effective is generative Al at producing cocotb+PyUVM code
compared to UVM-SV?

2. |s generative Al mature enough to assist DV engineers in creating
complex VIP, or is its utility limited to simpler code editing tasks?

Experimental Dimensions

 LLM Provider
* Google: gemini-2.5-pro-preview-06-05
* Anthropic: claude-opus-4-20250514
* OpenAl: 03

* Verification Methodology

* SystemVerilog using UVM
* Python using cocotb + PyUVM

* Coding Conventions
* Without additional coding conventions

Aider

e “Al pair programming in your terminal”
» Selected Aider for the paper as it allows scripting its use
e Systematically test all model and configuration permutations

Aider v@.51.2-de

Main model: gpt-40-2024-08-06 with diff edit format

Weak model: gpt-4o-mini

Git repo: none

Repo-map: disabled

Use /help <question> for help, run "aider --help" to see cmd line args

> make a python snake game
To create a simple Python Snake game, we can use the pygame library. Below 1is

the code for a basic Snake game. This will create a new file named
snake_game.py with

(2025

DESIGN AND VERIEICATION ™

VIP Generation Prompts

 UVM-SV: Create under vips/apb directory a production-quality UVM-
1.2 SystemVerilog VIP for the AMBA APB3 protocol. The VIP should
include all standard UVM components plus a comprehensive
sequence library, a functional coverage model and protocol checks

implementing the entire APB3 specification.

 PyUVM: Create under vips/apb directory a production quality PyUVM
VIP for the AMBA APB3 protocol. The VIP should include all standard
UVM components plus a comprehensive sequence library, a
functional coverage model and protocol checks implementing the

entire APB3 specification.

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

TB Generation

* Also asked to generate a TB using the APB VIP
e Simple APB passthrough DUT given (not generated)

MST_PCLK SLV_PCLK
MST_PRESETn SLV_PRESETn
MST_PADDR SLV_PADDR
MST_PSEL SLV_PSEL
MST_PENABLE SLV_PENABLE
MST_PWRITE SLV_PWRITE
MST_PWDATA SLV_PWDATA
MST_PRDATA SLV_PRDATA
MST_PREADY SLV_PREADY
MST_PSLVERR SLV_PSLVERR

(2025

DESIGN AND VERIEICATION ™

Result Evaluation

e Review of the generated VIP code

* Syntactic correctness & elaboration
* |teration count VIP

* |teration count TB+VIP

 Functional correctness
e LLM Costs

Review of the generated VIP code

 UVM-SV with and without conventions
e Surprise in differences of generated code across LLMs
e Conventions improve structural quality
* Risk of loss of functionality with conventions
e Protocol versions are a common pitfall (APB3 vs. APB4)
* Coverage quality varies greatly
* Reset and timing are weak points

Sequence libraries show promise

Code Convention Influence (1)

e Convention: Use the covergroup sample() method to collect coverage

Without convention With convention

covergroup apb_cg; covergroup apb_cg with function
sample(apb_transaction trans);

Code Convention Influence (2)

e Convention: Use prefix_and _postfix to delineate name types

Without convention With convention

virtual apb_if vif; virtual apb_if m_vif;

apb_config cfe; apb_config m_config;

Code Convention Influence (3)

e Convention: Use a begin-end pair to bracket conditional statements

Without convention With convention

if (1....:get(this, "", "cfg", cfg)) if (1...::get(this, "", "cfg", m_cfg)) begin

‘uvm_fatal("NOCFG", "...")
‘uvm_fatal("NOCFG", "...") e

Syntactic correctness

Tested SV-UVM static compile, elaboration

Mypy code analyzer for PyUVM
No LLM first time right

Number of iterations

B automatic
B manual

UVM-SV PyUVM UVM-SV PyUVM UVM-SV PyUVM
Anthropic Google OpenAl

w

N

=

o

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

Iterations for first Simulation

* UVM-SV similar low effort for first simulation
* PyUVM needed lots and lots of iterations with mixed results
e Google run, Anthropic aborted, OpenAl very slow to respond

Number of iterations

30 B automatic
25

20 B manual

15

10

5

. — I

UVM-SV PyUVM UVM-SV PyUVM UVM-SV PyUVM
Anthropic Google OpenAl

A /) (2025

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

Observations Reaching Simulation Readiness

* Multiple runs of the same bug fix = different results
* Like throwing a dice

e All LLMs work like trial and error
* Thinking output: ,Let’s try xyz and see if that fixes the issue.”

* |Issues working with PyUVM
* LLMs seem to guess what a Pythonic syntax might be compared to UVM-SV
* Had a lot of trouble with factory and config database
* Enum usage like UVM_ACTIVE
e LLM attempts to use try ... except blocks to fix coding issues

Waveform Analysis

 luvmsy PYUVM
Google - PREADY, PSLVERR undriven ~ + No signals X or Z
- Not waiting on reset - Only read transactions

+ No signals X or Z --- No waves analyzed
+ Written matches read data --- Aborted compile/elab
o Memory model

+ No signals X or Z --- All signals Z
o Memory model --- Missing DUT hookup code
- Not waiting on reset

Cost Analysis - VIP generation

* Cost to generate VIP only

| Anthropic | Google ____ OpenAl

UVM-SV no conv 0.88 0.08 0.10

UVM-SV with conv 0.84 0.13 0.09
PyUVM no conv 0.92 0.08 0.06

PyUVM with conv 0.85 0.10 0.11
[in USD]

Cost Analysis - Overall

* Cost to generate VIP, fix VIP, generate TB, fix TB and simulation

| Anthropic | Google | OpenAl
UVM-SV no conv 8.35 0.62 0.98
PyUVM no conv 29.94 6.76 1.06

[in USD]

Conclusion

 UVM-SV code generation more mature than PyUVM out of the box

 UVM-SV generation can be used for serious DV work

* Given detailed prompts
* Add code conventions to fit company rules
* Great help for debug to get ideas

* Any LLM output needs experienced engineer to cross check results
e Otherwise LLM might use try ... except, comment out code or disable features

* PyUVM needs more research
* Which context, rules, conventions need to be given

Questions

	Slide 1: AI Pair or Despair Programming Using Aider to build a VIP with UVM-SV and PyUVM
	Slide 2: AI Reshaping Industries
	Slide 3: Motivation
	Slide 4: Experimental Dimensions
	Slide 5: Aider
	Slide 6: VIP Generation Prompts
	Slide 7: TB Generation
	Slide 8: Result Evaluation
	Slide 9: Review of the generated VIP code
	Slide 10: Code Convention Influence (1)
	Slide 11: Code Convention Influence (2)
	Slide 12: Code Convention Influence (3)
	Slide 13: Syntactic correctness
	Slide 14: Iterations for first Simulation
	Slide 15: Observations Reaching Simulation Readiness
	Slide 16: Waveform Analysis
	Slide 17: Cost Analysis - VIP generation
	Slide 18: Cost Analysis - Overall
	Slide 19: Conclusion
	Slide 20: Questions

