A Shift-left Methodology for an Early Power Closure Using EDCs and Power Analysis

Mohammed Fahad, Siemens-EDA
Problem Statement: Current Use Model

The Problem with Addressing Power Late

- Leaving Power to the last minute is not advisable
- Scope for optimization is more during early RTL
Recommended Use Model: Shift Power Attention Left

Address Power Early – Move it left for more impact

- EDC and iterative Power Analysis help reduce power linearly with incremental revision of the RTL
- It helps addressing the power early on for more impact on reducing power
- A Methodology that is regression ready
The Challenges

The Challenges Associated with RTL Power Flow

Difficult Tool Setup
- Provide inputs like waveform, physical information etc
- Calibration for Power Estimation

Power Analysis and Large TAT
- May require deeper analysis of reports to understand the problems and fix them, often late in the design cycle

Late Consideration of Power
- Lack of time to find and fix power issues
- Discovering problems late will delay schedules
The Essential Ingredients of the Required Methodology

Support Structural Checking while Vectors are not ready yet

Helps clean inputs and provide power coverage insight

Helps quick power trending and tracking in regression
The Solution: The Proposed *shift-left* Methodology

Methodology Using EDCs and Power Analysis

RTL

Liberty

Early Power Checks

Input/vector Qualification (Liberty, Vectors, SPEF)

Power Analysis

Regression Ready Framework
The Solution: PowerPro Power Optimization Guidance

PowerPro offers a wide variety of Power Optimization Techniques

• Early Design Checks
 • Static Checks
 • No Activity File required
 • Power Linting and Gating Coverage Checks

• Functional Redundancies
 • Micro-architectural and Combinational Redundancies
 • Waveform mining to find Redundant Toggles in the design
 • Leads to opportunities that would allow user to find gating candidates

• Sequential Optimization
 • Based on Sequential Analysis
 • Complete enable expression visualization for implementation
Early Design Checks
Structural Analysis of RTL to reveal power issues upfront

• Can be run without vectors
• Runs extremely fast
• Performs structural analysis of the RTL to find potential issues that can impact power downstream
• EDC metrics can be used to qualify IPs for lowpower
Early Design Checks
Structurally Redundant ICGs example

(1) ICG1 does not drive FF directly
(2) ICG2 gated clock output is floating

(1') Merge two ICGs into one
(2') Remove ICG2
Power Analysis
Complete portfolio for Power Analysis, from early RTL to Gate, IP to SoC

• Accurate RTL and Gate-level Power Estimation
 - RTL Power Accuracy within 15% of layout
 - Gate Power Accuracy within 3% of layout
 - Ability to use RTL stimuli to perform Gate-level Power Analysis

• Averaged Power and Time-based Power
 - Averaged Power
 - Time-based Power (Cycle-Accurate)
 - Supported switching activity formats: QWAVE, FSDB, SAIF, STW

• Detailed Reports and Intuitive Debug
 - Summary Power, Hierarchical Power
 - Power by Component/Category
 - Power by Clock Domain
 - Intuitive GUI with cross-probing, querying, filtering etc
Averaged and Time-based Power Analysis
RTL, Gate and RTL-stimulus-on-Gate

Compile → Switching Activity Propagation

Libs → RTL/NL → SDC → RTL-to-Gates Namemap File → SPEF → UPF (optional)

Simulation or Emulation

FSDB/QWAVE/S TW/SAIF

Averaged Power/Energy Reports by Summary/Hierarchy

Time-based activity plot

Time-based Power Plot and Reports

Power Waveform for IR-drop analysis

Name-map file only for RTL-sim on Gate analysis

Name-map file only for RTL-sim on Gate analysis
Power Setup and Input Quality Check
Ensure first-time right power estimates with data integrity checking

• Correct setup leads to correct power estimates!
 - Incorrect setup and deficient inputs can lead wrong power estimates, longer TAT

• Did I provide the correct setup?
 - Setup can be wrong unintentionally, leading to incorrect power numbers

• Quality of input determines the quality of output
 - Data integrity checks (DICs) ensure that the input provided is not deficient
 - Quality checks at each step (Libraries, SPEF, Waveform)
Power Coverage for Stimulus Qualification
Averaged Toggle Profile and Power Coverage Metrics

• Evaluate power coverage of your vectors
 - All portions of the design must be stressed by given vectors
 - Multiple waveforms stressing same portions of the design with similar toggle profile could be redundant, hence discarded

• Qualify workloads for power
 - Find instances that are always toggling or not toggling at all
 - Establish toggle correlation of the clock with design signals
 - Helpful in catching anomalies in use case

Section-3b: Dead Instances-Clock blocked (top: pci, Total Flops: 790486)
Clock pin of following instances is not toggling.

- ucpi1
- ucpi1.uif
- ucpi1.uct1
- rxmod_u1
- rxmod_u1.u2
Activity Profiling to find Regions-of-Interest

Time-based Toggle Activity Profile

- Identify regions of interest
 - Categorize windows as Idle, Active and Peak scenarios
 - Cut-out windows of interest

- Use for downstream analysis
 - Multi-CPU support enables time-based toggle profiling for billions of cycles (Cycle Accurate profile)
 - Run power analysis and optimization faster by reducing analysis window to millions of cycles from billions
Complete solution for Low-power

From early RTL to System-level Power

<table>
<thead>
<tr>
<th>Input/Vector Qualification</th>
<th>Early Power Checking</th>
<th>Power Analysis</th>
<th>Power Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctness of Inputs (Structural + Functional Issues)</td>
<td>Structural Checks</td>
<td>RTL/Gate Averaged Power</td>
<td>Clock Gating</td>
</tr>
<tr>
<td>Toggle Profiling (Mode Qualification, RoI Identification)</td>
<td>Functional Checks</td>
<td>RTL/Gate Time-based Power</td>
<td>Memory Gating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTL Stimuli for Gate</td>
<td>Data Gating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTL/Gate Glitch Power</td>
<td></td>
</tr>
</tbody>
</table>

Typical
Conclusion and Summary

• Early RTL can be analyzed for Power to determine if IP is good in terms of power or not
• Fast analysis with minimal setup means it can be automated and integrated with regression
• Static and Dynamic checking can quickly point to power issues upfront
• Can be easily adopted by CAD teams for low-power IP qualification
Questions