DESIGN AND\Q:ONW

) S’ ; D

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

A scalable VIP component to increase robustness of
co-verification within an ASIC

onsemi

Agenda

 Co-verification adoption

e State-of-the-art Vs novel approach
* Description on the novel approach
* Overview on FW_VIP solution

e Case study analysis

* Conclusion and next step

DESIGN AND VERIFICATION ™
CONFERENCE AND BITION

Co-verification adoption to meet complexity

* Increasing complexity of the ASIC product (e.g. power regulator) is
pushing platform to include SOC-like architectures.

e Standalone verification of the firmware with FPGA emulators doesn’t
meet the signoff requirements of the complete DUT application:
A full-chip co-verification approach is required to qualify the device.

* A testbench where the entire DUT (digital, analog logic plus the firmware) is
instantiated should be adopted.

* A fully featured UVM environment should be adopted.

IS INITIATIVE

State-of-the-art Vs novel approach

* FPGA Centric approach: firmware engineers verify their own code.
A.k.a. “Traditional Approach”.

 UVM-centric (VAL approach): “fake” register map to map verification
component functionalities into firmware world and to develop test in
firmware with randomization and UVM checkers in place.

* Novel approach: using FW_VIP component which reduces the impact
of co-verification to the verification and firmware workflow.

1S INITIATIVE

Workflow changes

[eomonas awronce |, | NOVEL APPROACH * Inserting labels within
firmware to identify
e e - P s - significant functions linked to
J ! product capabilities.
= * |dentifying significant
= . a8 variables that are linked to
cmo product capability.
l . « Automation of generation
Rege. R inputs for FW_VIP to manage
changes of the firmware code.

Figure 1 - Workflow changes

023

DESIGN AND Vi =ICATION ™

SYSTEMS INITIATIVE

FW_VIP: monitored events

Once the flow is in place the
FW_VIP automatically

FUNCTION

cALLS T translates the firmware events
VARIABLE into UVM transactions which
———rt i will be passed to the
e scoreboards and checkers.
LINEOFCODE The pictures is showing the

EXECUTION

some types of events the
FW_VIP is able to monitor.

DESIGN AND VERIFICATION ™
CONFERENCE AND EXHIBITION

TEMS INITIATIVE

FW_VIP: block description

The verification IP topology is
composed by:

L ES - MEMBUS VIP: to monitor

memory transactions (e.g. ahb).

- PCIF: to monitor addressing on
Program counter.

- MONITOR: to translate events
into transaction

- CONFIG: for automatic
configuration to adapt to the
firmware releases.

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

STEMS INITIATIVE

FW_VIP: the packet

typedef enum {pc,dut_state,variable} event_type;

class|fw_packet|extends uvm_sequence_item;

event_type curren tEvent;
string pc_event;
string variableName;|
bit [31:0] variableValue;

‘uvm_cbject_utils_begin(fw_packet)

“uvm_field enum(event_ type, currentEvent, UVM ALL_ON)

“uvm field string(pc_event, UVM_ALL ON)

‘uvm_field string(variableName, UVM_ALL ON)

“uvm_field int(variableValue, UVM_ALL ON)

“uvm_cbject_utils_end

function new(string name = "fw_packet”);
super.new (name) ;
endfunction

endclass : fw_packet

The fw_packet of the FW_VIP is suited
to communicate to other components:

- Hardware and firmware
synchronization events (e.g. interrupt
calls) for which “pc_event” variable
carries on the information.

- Variable updates within the firmware
for which “variableName” and
“variableValue” carries on the
information.

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

Configuration from case study
vout, max_ra 20000542 At the beginning of the

vout_min_ra 20000550 simulation the components

SRR AR S 20000005 which are listening transactions

I and events related to the

ot fimans iy catlc. o GUANIERA firmware load the values from
Figure 6 - ram AddressList configuration file two files.

load configuration end DEFAULT 00003£72 The contents of these files are

AosticonyopEREion JINEF 00103209 “solution dependent” and has

load user confiquration from OTP end DEFAULT 00002efé

load user confiquration from OTP HIDDEN 0000ZecS to be.dEfIned by \/.erlflcatlon
e g o and firmware engineers
together.

DESIGN AND VERIFICATION ™
CONFERENCE AND EXHIBITION

TEMS INITIATIVE

Monitoring variables

ety The monitor of the FW_VIP

uym info("fy monitor”, Ssformatf ("AHB packet triggered \n %s",p.sprint()),UVM_FULL)

Lo e operates as bridge for memory

‘uym_info("fu_monitor", Ssformatf ("AHB write packet triggered \n

iz 0y o transactions between MEMBUS

if (zamAddressLisc.exists(ahb pkt.haddr)) begin

——, R VIP and other parts of the

= ramaddressiist [ahb_pkt.hadds];

e verification environment.

The ramAddresslList is the array
filled up during configuration
phase and contains the trigger
points used to monitor the

s oo firmware variables. After the
- ' analysis of the MEMBUS VIP
oo i transaction the fw_packet is sent.

Scast (ram pkt.dutStateValue,ahb_pkt.hwdata(7:0]);

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

IS INITIATIVE

Monitoring Program Counter

virtual task run phase (uvm phase phase);

forever begin
8(posedge yif.clk);

‘uvm info("fw monitor", Sgformatf ("program counter triggered: %4X",

vif.program counter),UVM FULL)

if NpgWValuelist.exists(yif.program counter))| begin
pe.pkt.pc event = pegValuelist [vif program counter];
pe.pkt.variableName = "NULL";

pc_pkt.currentEvent rc;

‘uym info ("fw monitor"”, Sgformatf ("PC %8X is in the list o

R sprint()),UVM FULL)
‘uvm _info("fw monitor”, $gformatf ("PC eventin

¥s,pc_pkt.pc event),UVM NONE)

zend pkt.write (pc pkt);

end

end

endtask: run phase

1S INITIATIVE

The monitor of the FW_VIP
operates as bridge for memory
transactions between program
counter interface and other parts
of the verification environment.

The pcValuelist is the array filled
up from configuration phase and
contains the trigger points used to
monitor events related to
program counter.

After the analysis of the program
counter event the fw_packet is
sent.

DV

CONFERENCE AND EXHIBITION

Automation process

SYMBOL FILE ‘ PC VALUE LIST CONFIG FILE
FROM COMPILER [FumiN

RAM ADDRESS LIST CONFIG
FILE

Automation to deal with different firmware releases is achieved through
configuration files which are generated by scripts.

The firmware and verification engineers works together to agree on the
content of this files. Eventually label has to be inserted within the firmware.

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

Case Studyl: intercept pc to trigger self-check

function void write pc pkt(fw packet p);
uym_event start copy:
uvm _event copy finished:
fu_packet pkt;

—— The fw_packet is received

case (pkt.currentEvent)

— through a port and it generates

int res [$l:
res = pg_start labesls.find index(x) with (x == p.pc_event); .
B — o a trigger for the checker.
gopy. t = labels mapip.pc event];
start_copy = ep.get("start copy"):
gtazt copv.trigaex();
end
res = pc end labels.find index(x) with (x == p.pc _event);
if(res.size() == 1) begin
copy. finished = ep.get ("copy finished"):
copy finished trigger();

end
dut _state: begin end
variable: begin end

endcase

endfunction: write pc pkt

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

Case Studyl: copy check

forever begin
case (state)
"d0: pegin

int res [Sl:

start copy.wait trigger():

// Initialize here the addr ligk data structures as needed Th e C h ec ke r iS Sta rted to C h ec k

if (gopy list.size() > 0) begin
init data structures(); t h t t M f
BETe S € correct execution ot an

res = gopy list.find index(x) with (x == ggpy.t);

ks operation.

“uvm error{get full name(), "Unexpected copy

funection™)

else

copy. list.delete (res[0]);

end

end

'dl: begin
copy finished wait trigger():
// Checks the copied data
check copyl):
state = 'd0;

end

gndcase

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

VERSARY

Case Study2: variable checkers

function void wrike £ pkt(fu packet £w pkb);
£w.packet pke:

Scast (pkt, fu pkt.clone());

case (pkt.currentEvent)

= The fw_packet is received

- through a port. The expected

case (pkt, rariableNams)

e hardware properties (e.g.a
e — register content) is checked

oA according the value of the

"youtr max b

end

: begin

e — variable within the packet .

"gout Lransition rate ra" : begin
vo1d" (CHEGE veut transition rate var (pkt.varisblevalue,0));
end
"gout bransition rate rb" : begin
void' (GHEGE. vouk % ition rake var(pkt. bleValue, 1))
end
sndoase
end
end
endcase

sndfunceion : write fu pit

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION

10 YEAR ANN

Conclusion

Pros

Cons

FW-Centric (FPGA) approach

Can be used for Performance Analysis/Stress
testing on FPGA/HW-emulator

Limited debug capabilities
Limited code coverage

No self-checking capabilities from UVM
world

Few capabilities of analog emulation

UVM-Centric (VAL) approach

Full self-checking capabilities from UVM
world

Easy to debug
High Code Coverage

Scenarios written in FW language

Verification eng. must manage aspects
related to FW development (scatter file,
compiler option etc.)

Can’t be used for Performance
Analysis/Stress test on FPGA/HW-emulator

Novel Approach

Full self-checking capabilities from UVM
world

Easy to debug
High Coverage

Limited changes to usual FW and Verification
worktlows

Can’t be used for Performance
Analysis/Stress test on FPGA/HW-emulator

We successfully
implement the novel
methodology and
reached all the
predefined target.

(2023
DESIGN AND V| FICATION™

DV

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Next step

1. To extend the approach to a multi-core IC.

2. To implement coverage analysis of the firmware with specific covergroup
and/or line code coverage

DESIGN AND VERIFICATION ™
CONFERENCE AND BITION

.-

Questions

Any question is well
accepted... ©

