
A scalable VIP component to increase robustness of
co-verification within an ASIC

Mario de Matteis – Matteo Barbati

Agenda

• Co-verification adoption
• State-of-the-art Vs novel approach
• Description on the novel approach
• Overview on FW_VIP solution
• Case study analysis
• Conclusion and next step

Co-verification adoption to meet complexity

• Increasing complexity of the ASIC product (e.g. power regulator) is
pushing platform to include SOC-like architectures.

• Standalone verification of the firmware with FPGA emulators doesn’t
meet the signoff requirements of the complete DUT application:

• A full-chip co-verification approach is required to qualify the device.
• A testbench where the entire DUT (digital, analog logic plus the firmware) is

instantiated should be adopted.
• A fully featured UVM environment should be adopted.

State-of-the-art Vs novel approach

• FPGA Centric approach: firmware engineers verify their own code.
A.k.a. “Traditional Approach”.

• UVM-centric (VAL approach): “fake” register map to map verification
component functionalities into firmware world and to develop test in
firmware with randomization and UVM checkers in place.

• Novel approach: using FW_VIP component which reduces the impact
of co-verification to the verification and firmware workflow.

Workflow changes
• Inserting labels within

firmware to identify
significant functions linked to
product capabilities.

• Identifying significant
variables that are linked to
product capability.

• Automation of generation
inputs for FW_VIP to manage
changes of the firmware code.

FW_VIP: monitored events
Once the flow is in place the
FW_VIP automatically
translates the firmware events
into UVM transactions which
will be passed to the
scoreboards and checkers.
The pictures is showing the
some types of events the
FW_VIP is able to monitor.

FW_VIP: block description
The verification IP topology is
composed by:
- MEMBUS VIP: to monitor

memory transactions (e.g. ahb).
- PC IF: to monitor addressing on

Program counter.
- MONITOR: to translate events

into transaction
- CONFIG: for automatic

configuration to adapt to the
firmware releases.

FW_VIP: the packet
The fw_packet of the FW_VIP is suited
to communicate to other components:
- Hardware and firmware

synchronization events (e.g. interrupt
calls) for which “pc_event” variable
carries on the information.

- Variable updates within the firmware
for which “variableName” and
“variableValue” carries on the
information.

Configuration from case study
At the beginning of the
simulation the components
which are listening transactions
and events related to the
firmware load the values from
two files.
The contents of these files are
“solution dependent” and has
to be defined by verification
and firmware engineers
together.

Monitoring variables
The monitor of the FW_VIP
operates as bridge for memory
transactions between MEMBUS
VIP and other parts of the
verification environment.
The ramAddressList is the array
filled up during configuration
phase and contains the trigger
points used to monitor the
firmware variables. After the
analysis of the MEMBUS VIP
transaction the fw_packet is sent.

Monitoring Program Counter
The monitor of the FW_VIP
operates as bridge for memory
transactions between program
counter interface and other parts
of the verification environment.
The pcValueList is the array filled
up from configuration phase and
contains the trigger points used to
monitor events related to
program counter.
After the analysis of the program
counter event the fw_packet is
sent.

Automation process

Automation to deal with different firmware releases is achieved through
configuration files which are generated by scripts.

The firmware and verification engineers works together to agree on the
content of this files. Eventually label has to be inserted within the firmware.

Case Study1: intercept pc to trigger self-check

The fw_packet is received
through a port and it generates
a trigger for the checker.

Case Study1: copy check

The checker is started to check
the correct execution of an
operation.

Case Study2: variable checkers

The fw_packet is received
through a port. The expected
hardware properties (e.g.a
register content) is checked
according the value of the
variable within the packet .

Conclusion

We successfully
implement the novel
methodology and
reached all the
predefined target.

Next step
1. To extend the approach to a multi-core IC.

2. To implement coverage analysis of the firmware with specific covergroup
and/or line code coverage

Questions

Any question is well
accepted… ☺

