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Abstract— Program Control Unit of a VLIW (Very Long Instruction Word) processor performs several complex 

control intensive functions. Hence, it is critical to verify this comprehensively including all possible corner case 

scenarios. This paper presents a framework for functional verification of program control unit of VLIW processors. 

Though constrained random and directed tests are used for functional verification, it is difficult to cover all possible 

test combinations with these methods alone. The framework described in this paper improves the functional coverage 

by automatically generating targeted test cases for most of the test scenarios including the corner cases. 
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I.  INTRODUCTION 

Very long instruction word (VLIW) processors are commonly used in software-defined radios (SDR) for 

baseband processing functions. These processors require very high performance digital signal processing 

capabilities to execute compute intensive algorithms like filtering, channel estimation, FFT, channel decoding etc. 

VLIW processors provide these capabilities through instruction level parallelism and pipelined execution. 

VLIW processors have instruction sets similar to RISC processors with fixed or variable instruction widths. 

Each VLIW instruction encodes one or more operations for parallel execution. Instructions scheduling in VLIW 

processors are typically done at compile time using compilers. Compilers schedule at least one or more operations 

for the execution units. The number of execution units or execution slots in these processors depends on 

computational complexity requirements of target applications. These numbers of execution units directly 

translates to the length of instruction word.  

Typical VLIW processors are pipelined and consists of a General Purpose Register file along with multiple 

execution units for computation, one or more Load-Store units to interface to a high bandwidth memory. A 

typical VLIW processor block diagram is shown in Figure 1. 

 

Figure-1: Typical VLIW Processor 
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II. PROGRAM CONTROL UNIT OF A VLIW PROCESSOR 

Program control unit is one of the control intensive units in a VLIW processor. It fetches instructions from 

program memory and dispatches them to appropriate execution units. The program execution is typically not 

linear. There are program discontinuities like branches, jump, interrupts and exceptions. This unit monitors these 

activities and changes program execution flow accordingly.  

In case of VLIW processors, number of instructions fetched from the memory and number of instructions 

dispatched to the execution units may not be same. In such cases, program control unit has to combine remaining 

instructions with next set of fetch instructions before successive dispatch. The program control unit uses an 

instruction buffer to decouple instruction execution and instruction fetch from program memory. This avoids 

unnecessary execution stalls due to delay in instruction fetch. At the same time these features increase the control 

complexity if a program discontinuity event happens simultaneously.  

Program discontinuity in pipelined processors introduces execution gaps between detection of program 

discontinuity and execution of destination instructions. These gaps also called as instruction delay slots need to be 

handled properly by the program control unit. Effective use of these delay slots can be done by performing valid 

operations in these cycles.  However in case of interrupts and exceptions the delay slots are typically flushed and 

hence no operations are performed. 

VLIW processors support zero overhead software pipelined loops to avoid unnecessary delay slots for 

repetitive loops. During execution of these loops, program controller tracks the program execution, fetches 

instructions in advance and dispatches them appropriately. Number of instructions inside these loops may fit 

within instruction buffer or may not. Both of these cases have to be handled by the program controller. 

III. VERIFICATION CHALLENGES 

The Program Control Unit supports various features which pose significant verification challenges as 

explained in this section. 

A. Program discontinuity  

 Instructions like branch, jump, subroutine calls, interrupts and exceptions cause program discontinuity.  

 Program discontinuity instructions have predicated and non-predicated variants.  

 Predicated program discontinuity can happen with and without delay slot execution. 

 Interrupts and exceptions with variable priority. 

 Nested interrupts and exceptions. 

These features require the following combinations to be covered. 

 Back to back branch, jump & subroutine call combinations. 

 Branch, jump and subroutine calls with positive and negative offsets. 

 Predicated branch, jump and subroutine calls with all supported flags for true and false conditions. 

 Nested branch, jump and subroutine call combinations. 

 Branch, jump and subroutine calls with and without delay slot execution. 

 Checks to monitor precise number of delay slot instruction execution. 

 Delay slot execution with variable instruction set combinations. 

 Interrupts and exceptions before, after, and along with branch, jump and subroutine calls. 

 Interrupts and exceptions during delay slot execution. 

 Nested interrupts and exception combinations. 

 Exclusive branch, jump & subroutine calls. 
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B. Zero overhead software pipelined loops(SFPLOOP) 

Zero overhead software pipelined loop is a feature supported by the processor to execute a set of instructions 

in a loop without any loop overhead for checking the loop counts. The hardware maintains loop counts and 

fetches required instructions in advance to avoid program discontinuity delays. The following test case 

combinations need to be covered to verify this feature.  

 SFPLOOP with allowed range of instructions with all valid instruction set combinations. 

 SFPLOOP with instruction block sizes less than, equal, and more than the instruction buffer size. 

 SFPLOOP starting (or ending) with start, middle, and end of the VLIW instruction packet fetched from 

program memory. 

 SFPLOOP occurring inside branch or jump outer loops 

 Nested SFPLOOP 

 Interrupts and exceptions occurring  before, after, concurrently or inside SFPLOOP 

 Branch, jump, and subroutine calls to exit SFPLOOP. 

 Exclusive branch/jumps inside SFPLOOP. 

C. Instruction Buffer 

 This is used for decoupling instruction fetch and execution units and needs to be verified with the following 

scenarios. 

 Occurrence of execution stalls, debug stalls, and instruction fetch delays.  

 Occurrence of program discontinuity when instruction buffer is empty or full. 

 Instruction fetch request when instruction buffer is almost full. 

D. Software debug features 

 Software debug features like break point, debug stalls, trace buffer, watch points, and single steps have to be 

verified during program discontinuity and zero overhead Software Pipelined Loops. 

 One of the key challenges of verifying a complex program control unit supporting the aforementioned features 

is to have a synchronized constrained random instruction generator along with program discontinuity event 

generator. As the test combinations of above features are huge, it is difficult to cover all possible test scenarios 

through constrained random simulations in a time bound schedule with finite resources.  Hence a framework is 

needed for improving functional coverage. 

IV. AUTOMATED TEST CASE GENERATION 

The framework described in this section not only covers the basic features of Program Control unit but also 

improves the functional coverage by generating targeted test cases for critical boundary conditions. These are 

self-checking directed tests with input stimulus and expected outputs. 

A. Test case generator 

Test case generator is a script written in high level languages like System Verilog or C for generating directed 

test cases based on user constraints. The generated test cases are assembly level tests for CPU program control 

and Data path verification. Inputs to the test case generator are, 

a) Sequences  

b) Sequence groups 

c) Sequence group order information 

d) Configuration file. 
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Sequences are basic elements of the test case generator. A set of required sequences are identified and 

developed based on the targeted test scenarios. These sequences have two parts; first part consists of an assembly 

code and the other part consists of an equivalent behavioral code. The assembly code is used for generating 

assembly level program and the behavioral code written in high level language is used for calculating the 

expected outputs. A sample sequence is shown in Figure 2. 

 

Figure-2: Sample Sequence 

The sequences which are similar in feature and the sequences targeted to cover variants of a feature are 

hierarchically grouped together to form sequence sub-groups and sequence groups. The sequence groups may 

have sequences, sub-groups and other sequence groups.  A sample sequence group is shown in Figure-3. 

 

Figure-3: Sample Sequence Group 

Sequence group order is information to the tool to select sequence group and sub-groups for a selected test 

scenario. The test cases are generated by randomizing and stitching sequences within sequence group/sub-groups 

as directed by the sequence group order. System Verilog randsequence or similar features are used for 

randomizing and stitching the sequences. A sample Sequence group order is shown in Figure-4. 
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A free running test case generator selects sequence group order randomly and generates random test cases. 

The test case generation is controlled with the help of configuration file. The configuration file constrains the tool 

to generate test cases for specific scenarios. 

 

Figure-4: Sample Sequence Group Order 

B. Test case generation  

The flow diagram for test case generation is shown in Figure-5. The test case to be generated for a test 

scenario is randomly selected or taken from a user configuration file.  Input stimulus to the test is provided 

through a pre-defined set of general purpose registers. Similarly expected outputs are re-directed to a pre-defined 

set of registers for self-checking. 

 

Figure-5: Test case generation flow diagram 
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Input stimulus to the test case is provided through initialization sequences. There could be more than one 

initialization sequences for a selected test. Number of initialization sequences is decided by the feature list of a 

selected test case. These initialization sequences are used for configuring control registers and general purpose 

registers.  

After input initialization, test specific sequence group order is selected. This sequence order is pre-defined 

based on the event orders within a test case. These sequence groups may have sub-groups. These sub-groups are 

hierarchically selected till it reaches a basic sequence. Once the basic sequence is selected, it goes to next 

sequence group till it completes traversing all the required sequence groups. Since each of these sequences have 

behavioral codes written in high level language, the tool computes expected results for every test case and adds a 

checker at the end of a test case to make it self-checking. 

An example for random sequence selection and stitching is shown in Figure-6. This example shows a test case 

generation sequence for “Interrupt occurring inside branch delay slots”. The test scenario triggers an interrupt 

event during branch delay cycle execution of the processor. The test case is generated by calling sequence groups 

A, B, C, D, E, F and G in a pre-defined order as shown in Figure6. Each of these groups has hierarchical sub-

groups. 

 

Figure-6: Sequence Group Selection Order 

In the above example, the sequence group “Branch execution Sequence” has sub-groups “with predication” 

and “without predication”. The sub-group “with predication” has further sub-groups “with delay slot instruction” 

and “without delay slot instruction”. The sub-group “with delay slot instruction” has sub-groups for flag selection 

goes to the main sequence group “Branch Delay Slot Sequence”. After completing all sequence groups, the 

stitching engine adds a checker with expected data. 

V. CONCLUSION 

This framework has been exhaustively used for verification of Program Control Unit for multiple VLIW cores 

in our group. The main advantage of this methodology is that the generated test cases can be re-used for FPGA as 

well as post silicon validation. Hence reduces the silicon validation time in addition to serving the purpose of 

providing good functional coverage. Since these test cases improved the functional coverage and covered all 

corner cases exhaustively, we were able to achieve first pass silicon success. 



 

7 

 

REFERENCES 

[1] “IEEE Standard for System Verilog — Unified Hardware Design, Specification, and Verification Language”. New York: IEEE 2005 

(a.k.a. System Verilog Language Reference Manual, or LRM.) 

[2] Philips Semiconductors, “An Introduction To Very-Long Instruction Word (VLIW) Computer Architecture” 

 


