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Introduction

UVM -ML framework combines multi language IP
and make them work together for any verification
task. The basic ML setup iIs as shown below:
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Objectives

Deploying ML framework to achieve -

e Reuse existing verification IPs irrespective of HVL used for
representation

e Enabling faster bring-up of SoC testbench

e More focus on verification than testbench development at SoC
level

e Optimized code with proven verification IPs

e Minimize verification environment bugs

e Faster time to market

Framework to support -

e Heterogeneous Objection Mechanism

e Configuration mechanism across multiple eVCs and UVCs

e Reuse of existing sequences, assertions, coverage and scoreboard

Configuration Mechanism: eVC to UVC

and Vice Versa

The Heterogeneous configuration mechanism

void'(uvm_config_int::get(this, “","
uvc_slaves”, max_slaves))
method.

uvm_config_set(("uvm_env",”
uvc_slaves”,”16'h7) method.

eVC Configuring the UVC variables UVC getting the slave variable

extend config_u
uvm_config_int::set(this,”config_u*",” { -

min_addr”,10J; keep soft uvm_config_get(min_addr);

uvm_config_int::set'['this,"config_u*"," keep soft uvm_config_get(max_addr);
maxaddr”,1000]); )

UVC getting the slave variable

Conclusions

UVM-ML framework helps in achieving -

1. SV based Virtual sequencer to control the multi-eVC sequences

2. Phase propagation across frameworks, e.g. build phase from UVC
to underlying eVC

3. Configuration of the eVC from UVM-SV environment both statically
and dynamically

4. Phase Synchronization

5. Graceful termination of tests from top-level

eVC Configuring the UVC variables

Proposed future work -

1. Enhanced Debugging and tracing capabilities

2. Messaging service mechanism at the ML level

3. Propagating Errors to the underlying slaves (eVC in this case)
4. A global objection mechanism
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