accellera

SYSTEMS INITIATIVE ™

A Unified Framework for Multilanguage
Verification IPs Integration

Surinder Sood, Selvakumar Krishnamoorthy, Gaurav Jalan

2015
DV OIN

CONFERENCE AND EXHIBITION

SmartPlay Technologies

Introduction

UVM -ML framework combines multi language IP
and make them work together for any verification
task. The basic ML setup iIs as shown below:

FrameWork FrameWork
(Uvc) (eVC)

UVM-ML
BackPlane

Adapter Adapter

FrameWork
(Verilog)

FrameWork
([SystemC)

Example demonstrating 2 + 1 [P integration: 1 UVC and 2 eVC
SVTOP

Virtual Sequencer
- Virtual Sequende |

Exported sequence & seq
item of eVC1

Exported sequence & seq
item of eVC2

Child component proxy

ml sequencer_prox ml sequencer_prox

Sequencer Config Config
Sequencer
ml_seqr_tlm_if ml_seqr_tlm_if
. -
Monitor BFM

Child component proxy

Monitor Driver

Objection Mechanism

SV - UVM test raises
Objection in run phase

Drop UVM-SV test
Objection in run phase

e — Objection
Dropped?

UVM-ML Framework

Assert the Out Port on
TEST_DONE.
(e- Objection dropped]

Connect to a top level
signal using an Out Port

Specman
test finished

Heterogeneous Objection Mechanism

References:

Objectives

Deploying ML framework to achieve -

e Reuse existing verification IPs irrespective of HVL used for
representation

e Enabling faster bring-up of SoC testbench

e More focus on verification than testbench development at SoC
level

e Optimized code with proven verification IPs

e Minimize verification environment bugs

e Faster time to market

Framework to support -

e Heterogeneous Objection Mechanism

e Configuration mechanism across multiple eVCs and UVCs

e Reuse of existing sequences, assertions, coverage and scoreboard

Configuration Mechanism: eVC to UVC

and Vice Versa

The Heterogeneous configuration mechanism

void'(uvm_config_int::get(this, “","
uvc_slaves”, max_slaves))
method.

uvm_config_set(("uvm_env",”
uvc_slaves”,”16'h7) method.

eVC Configuring the UVC variables UVC getting the slave variable

extend config_u
uvm_config_int::set(this,”config_u*",” { -

min_addr”,10J; keep soft uvm_config_get(min_addr);

uvm_config_int::set'['this,"config_u*"," keep soft uvm_config_get(max_addr);
maxaddr”,1000]); )

UVC getting the slave variable

Conclusions

UVM-ML framework helps in achieving -

1. SV based Virtual sequencer to control the multi-eVC sequences

2. Phase propagation across frameworks, e.g. build phase from UVC
to underlying eVC

3. Configuration of the eVC from UVM-SV environment both statically
and dynamically

4. Phase Synchronization

5. Graceful termination of tests from top-level

eVC Configuring the UVC variables

Proposed future work -

1. Enhanced Debugging and tracing capabilities

2. Messaging service mechanism at the ML level

3. Propagating Errors to the underlying slaves (eVC in this case)
4. A global objection mechanism

1. B. Sniderman, V. Yankelevich, “Techtorial: UVYM Multi-Language: Technology and Reference Application”, CDNLive Users Conference, Santa Clara CA, March 2013,

http://www.cadence.com/cdnlive/na/2013/Pages/default.aspx.

2.G. Leshem, V. Yankelevich, B. Sniderman. "UVM-ML Whitepaper. A Modular Approach for Integrating Verification Frameworks" (available for download at http://forums.-

accellera.org/files/file/65-uvm-ml-open- architecture.

Organization:

SmartPlay Technologies (I]) Pvt. Ltd.

Golden Towers, Kodihalli, Old Airport Road, Bangalore — 560 017
Tel: +91 80 43504444

SMARTPLAY

An Aricent Company

© Accellera Systems Initiative

DESIGN AND VERIFICATION™




