
A UVM SystemVerilog Testbench for
Analog/Mixed-Signal Verification:

A Digitally-Programmable Analog Filter
Example

Charles Dančak 1

Betasoft Consulting, Inc.
charles@betasoft.org

Abstract-A simple way of extending the UVM framework to verify an analog/mixed-signal device-under-test (DUT)
is presented. A digitally-programmable analog bandpass filter circuit serves as an example. The SystemVerilog UVM
testbench presented checks the filter's transfer gain at randomly-chosen frequencies against the values predicted by
SPICE. It collects the results in a UVM-based scoreboard. It uses SystemVerilog assertions to check the supply current
and bias voltage levels during power-down mode. The test suite can adjust the number of transactions until the desired
coverage is met. The proposed testbench uses standard UVM components as-is by encapsulating all the analog-specific
contents into a fixture submodule. It contains the DUT itself, generates analog stimuli, and measures analog amplitude
using XMODEL primitives. By seamlessly integrating XMODEL's ability to run fast and accurate analog simulations
into this UVM testbench, an efficient SystemVerilog-based verification with SPICE-level accuracy is demonstrated.

I. INTRODUCTION

Today's system-on-chip (SoC) designs have to interact in a variety of ways with the analog world around us. This
requires more analog/mixed-signal (AMS) circuits on a silicon die. Too often, subtle bugs in the AMS blocks, or in
the surrounding digital-interface logic, can lead to costly chip redesigns. Around the industry, much effort has been
invested in utilizing Universal Verification Methodology (UVM) techniques to verify the on-chip AMS functionality.

Various strategies have employed a UVM-SystemC library with custom AMS extensions [1] for automotive chips,
a SystemVerilog real-number model (RNM) of a flash analog/digital converter [2], and UVM testbenches employing
a mixture of SPICE, Verilog-AMS and wreal modeling for analog [3]. In addition, a UVM-based analog verification
standard is under development by Accellera's UVM-AMS Working Group [4]. Its goal is to extend all the familiar
enhancements of digital UVM testbenches—modular components, functional coverage metrics, concurrent assertions
—to the AMS domain. This standard will include both analog and digital UVM agents. In turn, the analog agent will
interact with analog resources able to drive or sample the analog signals of interest that enter or leave the SoC.

This work presents a UVM-based testbench to verify a digitally-programmable audio bandpass filter. An extension
of a previous object-oriented programming (OOP) testbench [5,6], this UVM-compliant testbench reflects similar
goals as the Accellera standard, and is built along the same architectural lines. One difference is that our approach
requires neither co-simulation facilities nor user-defined RNM modeling, while still achieving SPICE-like accuracy.

A. High-Level Testbench View
A high-level view of the UVM-based testbench for our analog/mixed-signal device-under-test (DUT) appears in

Fig. 1. Instead of the SystemVerilog application-programming interface (API) routines proposed in the Accellera
standard, we rely on Scientific Analog's XMODEL [7] software to enable UVM macros and methods—all written in
SystemVerilog—to interact with the DUT's analog inputs and outputs, verifying its operation across various modes.

XMODEL is a plug-in logic-simulator extension that represents an analog waveform using functional expressions,
expressed in time domain and in Laplacian s-domain format. An event will occur only when a functional expression
changes over time—not with every change in the signal's value. This can enhance simulation speed significantly [8].

1 C. Dančak is also a SystemVerilog instructor with UC San Diego Extension, La Jolla CA 92093, USA.

Figure 1. Upper Layers of UVM Testbench for Audio Filter

In this work, we show how an XMODEL simulation of the bandpass filter yields high speed, yet is accurate within
2% of HSPICE. We demonstrate seamless integration with familiar UVM capabilities like constrained randomization,
functional coverage, transactional-level modeling (TLM) pathways, and concurrent assertion of analog properties.

In Fig. 1, the DUT is instantiated within a fixture submodule named FIX. It is connected to the driver and monitor
objects in the usual UVM manner, via interface buses DIF and MIF. The uvm_config_db associates the actual buses
(e.g. DIF) with their virtual counterparts (e.g. VDIF). In this figure, the buses and the fixture are indicated by dashed
lines, since they are actually instantiated within the topmost UVM module, described in more detail in Section V.

B. Two Agents
The architecture includes a separate agent to handle each interface with the DUT. The driver-side agent, AGNTD, is

involved in sending a sequence of data packets from sequencer SQR to the driver DRV. Each packet has stimulus data
to be driven into the DUT. This includes a random integer frequency fINT constrained to the filter's audio range of
10–120 kHz, and one of eight randomly-chosen passband MODE values. Every packet is assigned an identifying tag.

SystemVerilog code for the data packets, the cyclic randomization of MODE, and conversion of fINT to a random
real frequency fREAL (necessary in the Synopsys VCS simulator we used) is found in our previous articles [5,6]. In
this article we focus on the changes needed to migrate from an OOP -based to a fully UVM-compliant testbench. We
sought to keep the UVM hierarchy simple. Thus, we have omitted the usual monitor object in the driver-side agent.

Monitor-side agent AGNTM is responsible for sending the DUT's response to the scoreboard SCB. The same packet
type is used, but the focus is on the measured peak-to-peak voltage amplitudes (PPA_OUT, PPA_IN) seen at the DUT
analog input and output. Monitor MON samples data arriving on the MIF bus, then reassembles it into packet form.

Stimulus and response data are forwarded by the driver- and monitor-side agents up to the scoreboard along TLM
pathways, represented by the red arrows in Fig. 1. Intuitively, each arrow corresponds to a .connect() call. Most of
the pathways in the figure connect the packet source to a single sink. But one TLM path, along the left side of Fig. 1,
can broadcast its packets to multiple sinks: in this case the scoreboard SCB and coverage object COVG. This path is
marked by small white diamond icons representing TLM analysis ports [9]. Object COVG is discussed in Section VIII.

C. Scoreboard
The scoreboard is the most DUT-specific object in the testbench. It compares actual versus expected filter gain, at

the applied frequency and mode. Actual gain is PPA_OUT/PPA_IN. Expected gain is found through a table look-up.

FIX

ENV

AGNTD

DRV

SQR

AGNTM

MON

SCB

fINT

EXP
GAINGOLD_REF

Reference
Model

Compare

ACT
GAIN

fINT

MODE

PPA

PPA

SEQ{1,2,3}
{VDIF: DIF}
{VMIF: MIF}

uvm_config_db

TEST_SUITE

MIF

DIF

Database

TLM
Path

VDIF

VMIF

Filter

DUT

Scoreboard

Bus

COVG

Agent, Monitor

Functional
Coverage

fINT, MODE,
fINT  MODE

Agent,
Driver
-Side

TLM Port

10: 0.047
11: 0.051
12: 0.055

• • •
120: 0.059

10: 0.048
11: 0.052
12: 0.056

• • •
120: 0.083

First, the scoreboard selects one of a set of eight mode-specific tables. Each table was generated by performing an
HSPICE linear AC analysis, then reformatting the results into a SystemVerilog associative array. The scoreboard can
scan the selected table to find the expected VOUT amplitude closest to fINT. The expected gain is then VOUT/VIN.

In the next section, we delve into the details of the fixture submodule. There, we will focus on how an analog DUT
can be linked into a UVM testbench. Our goal is to keep the UVM components of the testbench as simple as possible.

II. INSIDE THE FIXTURE SUBMODULE

A Cadence Virtuoso-generated schematic view of the fixture appears in Fig. 2. Submodule FIX has interface port
FREQ_IN connecting to DIF, and AMPL_OUT connecting to MIF. This submodule contains the DUT itself, and various
XMODEL primitives [10] used to apply analog stimuli to the filter and measure its analog response. These primitives
play the same role in our testbench as the abstract analog resources envisioned in Accellera's UVM-AMS standard.

Figure 2. A Virtuoso Schematic of Fixture Submodule

A. Bandpass Filter
The transistor-level DUT is detailed in Fig. 3. It is an active RC audio bandpass filter with a two-stage op-amp. Its

components are all XMODEL analog and digital primitives, using device models from a CMOS 45-nm SPICE library.
Its digital control-logic can switch various transmission gates on or off, to vary the filter's passband and gain.

Figure 3. Automotive Bandpass Filter DUT

R2=200 or 400 kΩ

Two-Stage
Op-Amp

Nfb

High-
Pass

Stage Low-
Pass

Stage
R1=200 kΩ

C1=20 or 40 pF

C2=6.65 or 10 pF

Bypass Switch

Bias

in

out

Vdd
(1.2 V)

Nref
vbn

The most-significant digital control bit puts the DUT in bypass/power-down mode. Three lower-order control bits
select one of eight programmable filter modes, as listed in Fig. 5 below. Our straightforward testing plan is to apply
a sequence of stimuli to the DUT. Each transaction will consist of a random mode and a sinusoidal input of random
frequency. Actual filter gain can then be compared against expected filter gain, in any mode, by the scoreboard. We
then power down the DUT for some number of cycles, recover, and finally resume testing for several more cycles.

B. Stimulus Chain
A stimulus-generation chain along the upper half of Fig. 2 transforms an incoming randomized fREAL value into a

sinusoidal input at that frequency, ready to apply to the DUT port in. By integrating fREAL over time t (modulo 1),
we create a ramp signal f t. Taken modulo-1, the result is a periodic sawtooth of frequency f. When scaled by 2π, it
yields a phase argument ωt. Feeding this argument into sine function sin_func, with an amplitude VIN of 100 mV,
we obtain the desired sinusoidal filter input. This signal is designated SINE in the fixture code listed in Fig. 4 below.

This circuit can either be captured in Virtuoso using the XMODEL library, or written in SystemVerilog as shown.

A few conversion primitives (narrow rectangles) appear in Fig. 2. A real_to_xreal converter is required at left
to change the incoming real frequency value into the corresponding xreal type required by XMODEL primitives.
The other converters in Fig. 2 change an ordinary bit signal into xbit type. The converters enable SystemVerilog
code—shown as a cloud in Fig. 2—to interact almost seamlessly with these XMODEL primitives and data types.

Workhorse user-defined type xreal is a SystemVerilog struct, specified in included header file xmodel.svh. It
has a value field, as well as other fields XMODEL uses to simulate analog signals in an event-driven fashion. Unlike
the user-defined struct types often employed in RNM [11], we need no knowledge of its internal fields, but simply
substitute xreal type for ordinary SystemVerilog types real or shortreal wherever needed in our fixture circuit.

Similarly, the workhorse xbit type is also a struct; its fields support high-precision simulation of digital edges
and pulse widths. In Fig. 2, this precision enables us to derive two accurate trigger signals for timing measurements.

Each converter has an inverse. Thus, xreal_to_real can be instantiated to convert back to ordinary real type.

//Fixture signals, using XMODEL data type:
 xreal fXREAL, SAW, PHASE, SINE;
 real_to_xreal R2XR(.in(FREQ_IN.fREAL), .out(fXREAL));

//Sawtooth of period 1/f:
 integ_mod
 #(.scale(1), .modulus(1), .init_value(0))
 F_SAW(.in(fXREAL), .out(SAW));

//Convert f to ω using math package:
 scale #(.scale(2 * M_PI))
 F2W(.in(SAW), .out(PHASE));

//Sawtooth ramp to sine cycle:
 sin_func
 #(.mode("sin"), .scale(VIN))
 F_SIN(.in(PHASE), .out(SINE));

Figure 4. Fixture Code to Generate sin(ωt)

As the clock waveform at the bottom of Fig. 2 indicates, stimulus is driven into the DUT at the very beginning of
the 1-ms PKT_CLK cycle. Response is sampled later, around mid-cycle, allowing ample time for transients to settle.

No conversion is needed to apply the digital stimulus to the programmable filter. The four-bit control word, of the
form {XOFF, MODE}, is wired directly to the filter's digital pins, as indicated by the DUT instantiation code in Fig. 5.
The XOFF bit is handled separately from MODE. Never randomized, it will be explicitly asserted in the BYPASS state,
to power down the DUT. It is deasserted in states FILTER, WAIT_1, and RESUME to restore normal filtering action.

Escaped naming is used to enhance the readability of the mode names and their passbands, and to further illustrate
seamless integration between XMODEL and SystemVerilog syntax. The four enumerated states defined at the lower
right of Fig. 5 are used to print status information during run_phase and report_phase—a convenient debug aid.
In the next section, we show how these states are explicitly assigned during the sequencing of a test.

Figure 5. Programmable Filter Modes and States

C. Measurement Chain
The middle portion of Fig. 2 shows the measurement chain that samples peak-to-peak voltage amplitudes at in

and out. Measuring a peak-to-peak voltage swing requires a well-defined time span of at least one cycle. This time
span is delimited by from and to trigger signals of type xbit. They are derived from an ordinary SystemVerilog
initial block. It drives bit signals named TICK and TOCK. Signal TICK transitions on falling edges of the clock;
TOCK transitions shortly after. Together, they define the yellow-highlighted measurement time span visible in Fig. 2.

Each edge is an active trigger. The same signals are fed to both meas_pp primitives. As a result, the monitor will
sample the amplitude data on MIF a little after mid-cycle. This leaves a sufficient time span to measure amplitudes.

The fixture thus encapsulates analog stimulus and measurement primitives, and their xreal or xbit connections,
within one convenient submodule. Its role is similar to the harness that has been proposed in the Accellera standard.

As we describe in Section VII, the fixture also includes primitives to support the assertion of analog properties:
leakage-current level during power-down mode, and the subsequent recovery of bias voltage. Another practical use
for the fixture—omitted from Fig. 2 to reduce clutter—is to feed through test-management signals from the driver's
side to the monitor's side. These include integer packet tags, trigger signals like TOCK, and the current state name.

III. A “FLAT” TEST SEQUENCE

The last section described the architecture of a fixture circuit able to exercise the programmable filter in any of its
modes or states. In this section, we devise a detailed test suite to apply to the DUT. Our test plan has several phases:

• Operate the DUT in normal filtering mode for an adjustable number of cycles (TRIALS). Collect coverage metrics.

• Power down and bypass the DUT for an adjustable number of cycles (INACTV). This includes one WAIT_1 cycle
for restoring power. Collect no coverage metrics during this inactive period, but rely on assertions to pass or fail.

• Resume normal filtering operation for an arbitrary fixed number of cycles (4) to test recovery from power-down,
and to collect additional coverage of applied frequencies and modes.

In UVM methodology, the simplest way to implement such a test plan is to define three distinct sequences, which
are then run consecutively. This strategy is known as a flat (i.e., neither hierarchical, layered, nor parallel) approach
[12]. The starting point is the sequencer SQR, an object that sends packets to the driver in Fig. 1.

Our simple flat-sequence approach requires only a minimal sequencer object. We instantiate the base-class UVM
sequencer class as-is, inside of the driver-side AGNTD. We can then parameterize it to our specific PACKET type:

 //Send sequence items of type PACKET to driver:
 uvm_sequencer #(PACKET) SQR;

//Filter instantiation:
 FILTER DUT(.ctl_byp(XOFF),
 .ctl_r2(MODE[2]), ...
 .ctl_c2(MODE[0]), ...);

//Filter mode type:
 typedef enum bit [2:0] {
 \M0_40-060x2 = 3'b000,

 \M6_20-120x1 = 3'b110,
 \M7_20-080x1 = 3'b111
 } MODE_t;

//Filter state type:
 typedef enum bit [1:0] {
 FILTER = 2'b00,
 BYPASS = 2'b11,
 WAIT_1 = 2'b10,
 RESUME = 2'b01
 } STATE_t;

//Filter instantiation:
 FILTER DUT(.ctl_byp(XOFF),
 .ctl_r2(MODE[2]), ...
 .ctl_c2(MODE[0]), ...);

//Filter mode type:
 typedef enum bit [2:0] {
 \M0_40-060x2 = 3'b000,

 \M6_20-120x1 = 3'b110,
 \M7_20-080x1 = 3'b111
 } MODE_t;

//Filter state type:
 typedef enum bit [1:0] {
 FILTER = 2'b00,
 BYPASS = 2'b11,
 WAIT_1 = 2'b10,
 RESUME = 2'b01
 } STATE_t;

0000 M0_40-060x2 40 60 2

0001 M1_40-040x2 40 40 2

0010 M2_20-060x2 20 60 2

0011 M3_20-040x2 20 40 2

0100 M4_40-120x1 40 120 1

0101 M5_40-080x1 40 80 1

0110 M6_20-120x1 20 120 1

0111 M7_20-080x1 20 80 1

1XXX Bypass/Power-Down Mode

DUT Digital Input Pins:
{ctl_byp, ctl_r2, ctl_c1, ctl_c2}

Binary
Value

Enumeration
Literal

f LO f HI | g |

Object SQR is connected to the driver by a TLM path, the short downward red arrow in Fig. 1. A UVM sequence is
an algorithmic packet generator. Its algorithm is defined by a body() task. Fig. 6 shows the task code for SEQ1. It is
left untimed. It outputs a series of packets to apply random stimuli to the DUT during normal filtering operation:

 task body(); //SEQ_FILTER: SEQ1
 TX_PKT = PACKET::type_id::create("TX_PKT");
 //Set invariant fields:
 TX_PKT.XOFF = 1'b0; //Deassert power-down bit.
 TX_PKT.STATE = FILTER; //Normal DUT state, FILTER.
 for (int I=1; I <= TRIALS; I++) //Knob from command line.
 begin:LOOP
 start_item(TX_PKT); //Called by DRV at rising clock edges.
 ++TX_PKT.TAG; //Driver and monitor tags must match.
 TX_PKT.randomize(); //Randomize frequency and mode.
 finish_item(TX_PKT);
 end: LOOP
 endtask: body

Figure 6. Task Defining a Sequence for Normal Filtering

Once the task creates a driver-side packet TX_PKT, it explicitly deasserts power-down bit XOFF, and sets the state
field to FILTER. These two fields do not vary from packet to packet. Then we iterate for some number of TRIALS.
In each pass, the frequency and mode will be randomized. The packet's tag is incremented. A handshake is carried
on with the driver object behind the scenes, by calling the pair of UVM methods start_item and finish_item().

This sequence is completely untimed. It is left up to the driver exactly when to apply the packet fields to the DUT.
As shown by the driver code snippet below, method get_next_item() is called on rising edges of PKT_CLK. The
other two sequences in the test suite, SEQ2 and SEQ3, are coded in a similar manner:

 //Driver code gets next packet from SEQ1 on SQR
 //at the very beginning of each PKT_CLK cycle:
 @(posedge VDIF.PKT_CLK);
 seq_item_port.get_next_item(TX_PKT);

UVM refers to adjustable control variables like TRIALS and INACTV as knobs. They are set from the simulator's
run-time command line, as described in Section IV, without recompiling testbench code. We can thus, implement a
complex test suite, suitable for an analog/mixed-signal DUT, as a series of well-defined UVM sequences. And we
can adjust the test length at run time, enabling us to either increase functional coverage or reduce the test iterations.
The next section describes how these three untimed sequences are run in consecutive order from the highest level.

IV. TEST SUITE CLASS

The highest-level object in the UVM component hierarchy of Fig. 1 is TEST_SUITE. It instantiates an environment
ENV, with all of its subcomponents. Class TEST_SUITE is derived from uvm_test, but is never directly instantiated
itself. Instead, the UVM phasing system automatically creates an instance named uvm_test_top, and begins to run
it at simulation time 0. As outlined in the next section, this will occur when run_test("TEST_SUITE") is invoked.

As Cummings [13] has pointed out, it seems intuitive to refer to this test-specific class as TEST_SUITE instead of
the more conventional “testcase,” since only one such test can be run during a UVM simulation. Thus, TEST_SUITE
in our example comprises three individual test sequences, defined in the previous section. It can in general be more
complex, involving parallel or hierarchical sequences (in which a top sequence includes one or more subsequences).

A. Launching Three Sequences
The code for our three sequences is outlined in Fig. 7. Task build_phase() gets the values for adjustable knobs;

we defer its details to the next subsection. Task run_phase() uses the knob values to launch individual sequences
of desired length. Notice the optional call to method set_drain_time(). This prevents TEST_SUITE from ending
the simulation abruptly when the last packet in sequence SEQ3 is applied to the DUT. By setting one cycle of drain
time, we ensure that the simulation continues past mid-cycle. This is a simple way to allow the very last stimulus to
propagate through the analog DUT, so the monitor can accurately measure the filter's last response amplitude [14].

The next statement in the task is a call to raise_objection(). This tells the UVM phasing system that the test
suite would object to halting the run until the task body is finished. Without it, the run could halt prematurely. Next,
SEQ1 is created, given a TRIALS knob, and started on sequencer SQR. The other two sequences are launched in the
same way. Recall that statements in a SystemVerilog task are executed consecutively, as if enclosed in a begin-end
block [15]. All three sequences thus run in textual order. Finally, phase method drop_objection() can be called.

 class TEST_SUITE extends uvm_test;
 function void build_phase(…);...
 /* TRIALS knob extracted from command line. */
 endfunction: build_phase

 task run_phase(uvm_phase phase);

 SEQ_FILTER SEQ1; //Normal filtering for TRIALS cycles.
 SEQ_BYPASS SEQ2; //Power-down, then wait, for INACTV cycles.
 SEQ_RESUME SEQ3; //Resume normal filtering for 4 more cycles.
 //Allow for last clock cycle to complete:
 phase.phase_done.set_drain_time(this, 1000us);
 phase.raise_objection(this);
 //Sequence 1.
 SEQ1 = SEQ_FILTER::type_id::create("SEQ1");
 SEQ1.TRIALS = TRIALS; //Pass knob to SEQ1.
 SEQ1.start(E.AGNTD.SQR); //Start SEQ1 on SQR.
 /* Code for Sequence 2. */
 /* Code for Sequence 3. */
 phase.drop_objection(this);
 endtask: run_phase

Figure 7. A Task to Run Three Consecutive Sequences

B. Passing Down Knobs
UVM is geared towards reconfiguring test details without having to recompile testbench code. In compliance with

this methodology, we migrated away from defining TRIALS and INACTV as ordinary SystemVerilog parameters. We
instead pass these knobs down from the run-time command line. The example below is for the VCS environment:

simv +TRIALS=36 +INACTV=4 +UVM_NO_RELNOTES -l LOG

The knob values must be known prior to any time advance. We thus put the extraction code into the TEST_SUITE
method build_phase(), as listed in Fig. 8. To extract the values, we used the uvm_cmdline_processor method
get_arg_value(). It is a UVM-style refinement of Verilog's familiar $value$plusargs() system function [16].
As is typical with the UVM base-class library, we first create a local instance of processor CLP, and then proceed to
invoke its get_arg_value() method. Extracted values 36 and 4 are seen as strings, just as in Verilog. But they are
easily converted into integers by SystemVerilog's handy atoi() string method [17].

 class TEST_SUITE extends uvm_test;

 //Declare command-line plusargs:
 int TRIALS, string TRIALS_s; ...
 function void build_phase(uvm_phase phase);
 //Create CLP instance:
 uvm_cmdline_processor CLP;
 CLP = uvm_cmdline_processor::get_inst();
 //Extract command-line plusargs:
 CLP.get_arg_value("+TRIALS=", TRIALS_s); ...
 //Convert string to int:
 TRIALS = TRIALS_s.atoi; ...

 endfunction: build_phase

Figure 8. Passing Command-Line Arguments Downward

Once the integer value of a knob such as TRIALS is extracted from the command line, it still must be passed down
to those sequences that reference it. This was illustrated by a corresponding assignment statement back in Fig. 7.

V. TOP-LEVEL MODULE

The top-level module UVM_TB is depicted schematically in Fig. 9. It is this module that is actually elaborated and
simulated by VCS (using the XMODEL plug-in extension). A typical XMODEL manifest file is shown in Fig. 10.

A. Selecting the Test Suite
UVM_TB contains a procedural code block, the initial block in Fig. 9. It invokes run_test("TEST_SUITE")

at time 0. The phasing system uses this information to create instance uvm_test_top, and to run it, as indicated by
the red arrow in the figure. Though UVM does support command-line selection of different test suites, we explicitly
coded the test-suite string name into the initial block, since our simple test plan only requires this single suite.

This topmost module not only instantiates the fixture submodule along with the DUT, but also instantiates the two
interface buses, DIF and MIF. They carry fixture signals to and from driver and monitor, via the virtual interfaces.
Bundled into these buses are PKT_CLK and an asynchronous active-high RST, generated by SystemVerilog code.

Figure 9. Topmost UVM Module

B. The XMODEL Command Line
Notice in Fig. 10 that XMODEL can pass on any valid compile-time or run-time option to the host logic simulator.

Options are prefixed and suffixed with double dashes. The simulator command is then simply: xmodel -f man.f

--sim vcs
--top UVM_TB
--timescale 1us/1us
--elab-option -ntb_opts uvm-1.2 --
--sim-option -assert quiet --
«packaged class files»
FILTER.sv
FIXTURE.sv
UVM_TB.sv

Figure 10. Typical Manifest File (man.f) for an XMODEL Run

The previous sections have outlined the various components of the UVM-compliant testbench we used in verifying
our analog/mixed-signal DUT. In the remaining sections, we delve into a few components of interest in more detail.

VI. CUSTOM SCORECARD PRINTING

A UVM-compliant testbench relies on UVM macros or methods—like uvm_report_info()—to print packet data
or scoreboard results to a log file or screen. Traditional Verilog $display() statements are not recommended [18].

initial
begin:SUITE

//Start at 0:
 run_test(
 "TEST_SUITE"
);
end: SUITE

DRV MON

FIX

Filter12 kHz 52 mV

MIFDIF

VDIF VMIF

PKT_CLK

DUT (in
mode M6)

Topmost UVM Module
ENV

TEST_SUITE

Typically, a UVM testbench outputs a large volume of information. The UVM printing routines all have a verbosity
argument, which users can set from the command line to adjust the level of detail printed out for an individual run.

To avoid cluttering the scoreboard with print-related code, we encapsulated printing routines, printer knobs, string
processing, and header and footer strings into a subclass named SCORECARD. This subclass has a table named DATA,
declared as an associative array in the listing of Fig. 11. As each transaction is simulated, the scoreboard will store
both stimulus and response data into a row of the table. The TX_PKT tag serves as an integer index N into the table.

Each row of DATA is a structure, with specific fields for the applied frequency and mode, filter state, and measured
actual and expected gain. When the scoreboard is done storing this tabular data, the scorecard SCD can easily print it
out in UVM tabular format, by iterating with a foreach() loop. An associative array is an effective SystemVerilog
storage option whenever the row count is not known in advance [19]. The custom printing routine in Fig. 11 is over
60 lines of code; the figure below lists only its key features. It is invoked indirectly by calling SCD.print().

 //SCORECARD FOR TABULAR PRINTING:
 class SCORECARD extends uvm_object;

 //Associative array of structures:
 DATA_t DATA[int];

 //Declare local print-policy object:
 LOCAL_PRTR printer;

 //Custom tabular print routine:
 function void do_print(uvm_printer printer);
 //Disable "Name-Value" header, type and size:
 printer.knobs.header = 1'b0;
 printer.knobs.type_name = 1'b0;
 //Print fixed table heading string:
 printer.print_generic("", "", 0, HEADING_s);
 //Print DATA[] row by row:
 foreach (DATA[N])
 begin:PRINT_LINE

 //Print table row as a generic line:
 printer.print_generic("", "", 0, {TX_LINE_s, RX_LINE_s});
 end: PRINT_LINE
 printer.print_array_footer();
 endfunction: do_print

Figure 11. Scorecard Printing Routine

It is critical to declare a local UVM print-policy object. To customize the tabular print format, we needed to adjust
several UVM printer knobs. If this is done globally, then all tabular UVM printing—including testbench topology—is
impacted. With printer localized, other tabular printing remains unaffected. We can selectively disable unneeded
features of the printout , such as the default Name-Value header, and the type and size columns.

UVM's tabular printing is intended to display an object with all its properties. Our goal here is not to display object
SCD, but to print out a custom table summarizing all the transactions applied to an analog/mixed-signal device. Thus,
we made heavy use of the UVM print_generic() method [20]. It can print an arbitrary string value.

In Fig. 11, print_generic() is called from inside a foreach() loop, which visits every row in the DATA array
and prints it out. The same method can be employed outside the loop, to display fixed header and footer information.

The scoreboard works closely with the scorecard to evaluate and print the simulation results. It receives incoming
packets from the driver and the monitor, as shown in Fig. 1. It then passes down the relevant packet fields to the SCD
array DATA. The scoreboard code snippet below shows how driver packet fields are stored in the structure members
of the array, using the packet tag as index. For printing purposes, a shorthand mode name like M4 is also extracted:

 //Store input fields in DATA:
 SCD.DATA[N].fINT = TX_PKT.fINT;
 SCD.DATA[N].MODE = TX_PKT.MODE;

Fig. 12 shows the results for a run of 36 TRIALS—including a UVM topology table, to show it was not affected.
Details of how the scoreboard compares actual to expected filter gain at an applied frequency and mode, by looking
up voltage amplitudes from an HSPICE-generated reference table, are found in our previous articles [5,6]. Notice the
footer, which demonstrates that worst-case discrepancy in transfer gain between HSPICE and XMODEL is below 2%.

--
Name Type Value
--
uvm_test_top TEST_SUITE @343
 E ENV @356
 AGNTD AGENTD @365
 AGNTM AGENTM @374
 COVG COVERAGE @393
 SCB SCOREBOARD @383
--

SCD @392
--
TX_ fINT MODE STATE RX_ gACT gEXP gERROR
TAG kHz Name Name TAG (OUT/IN) (HSPICE) (gACT-gEXP)
--
 1 34 M7 FILTER 1 0.80081911 0.79615200 0.00466711
 2 45 M0 FILTER 2 1.18788707 1.17873200 0.00915507
 3 10 M4 FILTER 3 0.24548713 0.24592900 -0.00044187
 4 16 M1 FILTER 4 0.86157682 0.85269000 0.00888682

 37 XX MX BYPASS 37 0.00000000 0.00000000 0.00000000
 38 XX MX BYPASS 38 0.00000000 0.00000000 0.00000000
 39 XX MX BYPASS 39 0.00000000 0.00000000 0.00000000
 40 XX MX WAIT_1 40 0.00000000 0.00000000 0.00000000
 41 110 M4 RESUME 41 0.69637779 0.68144600 0.01493179
 42 76 M7 RESUME 42 0.70367702 0.69537100 0.00830602
 43 12 M6 RESUME 43 0.51965732 0.51948100 0.00017632
 44 63 M1 RESUME 44 0.89859033 0.88735100 0.01123933
--
 Maximum |gERROR| per run: 0.01713050
--

Figure 12. Default UVM Topology and Custom Scorecard Results

Several rows of the simulation transcript in Fig. 12 are shaded in gray. These represent an inactive DUT, either in
power-down mode or waiting for supply voltage to be restored. During these cycles, no useful transfer-gain data is
acquired. But, as outlined in the next section, we can use this time to assert and check analog properties of the DUT.

VII. ANALOG ASSERTIONS

A simulated test suite is shown in Fig. 13. This test applies sixteen TRIALS to the filter in normal operating mode.
Coverage metrics are collected. The DUT then enters bypass state for four cycles. In this state the op-amp is powered
down. By asserting analog design properties, however, we can still check important DUT features like those below:

• The supply leakage-current level IDD of the powered-down op-amp should be less than 5 nA during BYPASS state.

• The nMOS bias voltage VBN should recover during the subsequent WAIT_1 state to its nominal level, 700 mV  50.

The downward red arrow in the simulation waveforms indicates a failure of the leakage-current assertion, due to a
deliberately-injected error. Such assertions are a powerful supplement to ordinary UVM test sequences, since they
are localized to specific circuit nodes or branches. A failure thus pinpoints a problem area in the device under test.

The SystemVerilog assertion (SVA) code for checking leakage current was presented in our previous work [5,6].
Here we show the SVA code and XMODEL hardware for checking on the recovery of the nMOS bias-voltage level.
Recovery from bypass/power-down begins in the WAIT_1 state. Fig. 14 lists the relevant SVA code, a property and
its assertion, alongside the fixture circuit used to measure the bias-voltage level at mid-cycle during the wait state.

Figure 13. Simulated Test Suite with Power-Down and Recovery

Prior to this wait state, the CMOS transmission gate was switched off. As soon as the DUT enters WAIT_1, control
bit ctl_byp is deasserted by the test sequence. The switch closes, and node voltage vbias should quickly return to
its nominal level. We bring this node voltage out to an xreal variable VBN_x, using an assign statement. It is fed
to the input of primitive meas_value. This samples its input voltage at around mid-cycle, triggered by the edges of
TICK. The output of the primitive is real variable VBN. It is legal to reference VBN in SVA property expressions,
provided that the overall expression evaluates to a Boolean. This check is triggered only during a WAIT_1 cycle:

//Bias recovery leads:
 xreal VBN_x; real VBN;
//Bias node inside of DUT:
 assign VBN_x = DUT.vbias;

//Bias voltage at TICK edge:
 meas_value
 M_VAL(//Real-valued output VBN:
 .in(VBN_x),.out(VBN),
 .trig(TICK_x)
);

//Check nMOS bias during WAIT_1:
 property BIASING_pro;
 @(posedge FREQ_IN.PKT_CLK)
 $rose(FREQ_IN.STATE == WAIT_1) |->
 (VBN >= 0.650) && //700 mV ± 50.
 (VBN <= 0.750);
 endproperty: BIASING_pro

 CK_BIAS:
 assert property (BIASING_pro)
 «Report pass; else report failure.»

Figure 14. Asserting the Recovery of Bias Voltage

With the aid of XMODEL measurement and conversion primitives, a wide variety of analog assertions can thus be
implemented, using the full range of SVA syntax. No language extensions are needed. This enables us to provide for
coverage of design-specific analog/mixed-signal device properties—even during cycles when the DUT is inactive.

VIII. FUNCTIONAL COVERAGE METRICS

During normal DUT operation, we collect functional-coverage metrics utilizing a stand-alone coverage object COVG
—in contrast to the embedded coverage class used in our previous OOP-based testbench [5,6]. This would enable the
UVM factory substitution of test-specific coverage objects during different test suites.

The stand-alone coverage class listed in Fig. 15 is derived from uvm_subscriber. This base class has a built-in
TLM port, represented by the small white circle icon on the COVG object in Fig. 1. Broadcast packets reach this port
carrying the fINT and MODE values driven into the DUT at the start of a cycle. Since these values are randomly
chosen, there is no guarantee our test suite will adequately verify filter operation for all its valid frequencies, modes,
and combinations thereof. The role of cover group CVG is to gather metrics for reporting percent coverage statistics.

 class COVERAGE extends uvm_subscriber #(PACKET);

 //Coverage group for mode and frequency:
 covergroup CVG;
 //Applied input-frequency bins (6):
 FREQ_cvg: coverpoint TX_PKT.fINT
 {
 bins B10 = {[10: 19]};

 bins B100 = {[100:120]};
 }
 //Applied input-mode values:
 MODE_cvg: coverpoint TX_PKT.MODE;
 //Cross-coverage: MODE x fINT
 CROSS_cvg: cross MODE_cvg, FREQ_cvg;
 endgroup: CVG

 virtual function void write(PACKET t);
 TX_PKT = t; //Copy PKT pointer.
 if (TX_PKT.STATE == FILTER ||
 TX_PKT.STATE == RESUME
)
 CVG.sample();
 endfunction: write

Figure 15. Collecting Functional-Coverage Metrics

The coverpoint for fINT specifies six explicit bins. Since MODE is enumerated, no explicit specification is needed.
Metrics are collected every time CVG.sample() is called. To avoid collecting coverage data for an inactive DUT, we
employ an if statement to conditionally sample only in states FILTER or RESUME. Notice that the call to .sample()
occurs within a write() function, invoked whenever the driver broadcasts a new packet out of its analysis port.

As explained more fully in [5,6], the toughest coverage goal to meet is the cross coverage between six frequency
bins and eight modes—a total of 48 combinations. The probability of hitting any one combination is only about 2%.
Fig. 16 shows typical results. The statistics at left are obtained using method CVG.CROSS_cvg.get_coverage() for
a run of 185 TRIALS—without the need of an external utility or HTML browser. The more detailed statistics at right
are extracted using the VCS urg utility, and then displayed in a browser. They pinpoint which combinations remain
uncovered. We reached 100% cross-coverage for a run of 195 TRIALS, using a random seed value of 3947.

UVM_INFO @ 196.000 ms: uvm_test_top.E.COVG [COVER]
--COVERAGE STATISTICS----
 Freq. Coverage: 100.00%
 Mode Coverage: 100.00%
 Cross Coverage: 95.83%

Figure 16. Coverage Statistics for Run of 185 Trials

In this section, we have briefly described a stand-alone coverage class, derived from uvm_subscriber, suitable
for a digitally-programmable analog/mixed-signal DUT. Keeping the functional coverage code separate—instead of
embedding it within other UVM components like a scoreboard or monitor—is often good practice [21]. As is evident
in Fig. 15, coverage code tends to be DUT-specific, and may require connections to remote parts of the environment.

IX. CONCLUSIONS

This work has demonstrated a UVM testbench for verifying a digitally-programmable analog/mixed-signal DUT.
An extension of previous work using SystemVerilog OOP code, the present testbench brings a number of UVM-style
enhancements—modular components, configurable messaging and test length, TLM pathways, functional-coverage
objects—into the AMS domain. The testbench utilizes standard UVM components to verify transfer gain for an audio
bandpass filter at random frequencies and passband modes. A UVM scoreboard evaluates the results against a SPICE
model. Tabular UVM printing is used to summarize the results. During power-down mode, leakage current and bias
voltage levels are checked using analog assertions. This XMODEL-based flow achieved an accuracy to within 2% of
HSPICE, with no sacrifice in speed, while requiring neither co-simulation facilities nor user-defined RNM models.

REFERENCES

[1] Barnasconi, Einwich et al., “AMS System Level Verification and Validation using UVM in SystemC-AMS: Automotive Use Cases,”
IEEE Design & Test, 2014.

[2] Georgoulopoulis, Giannou, Hatzopoulos, “UVM-based Verification of a Mixed-Signal Design Using SystemVerilog,” PATMOS 2018.
[3] Freitas & Santonja (Freescale), “UVM Ready: Transitioning Mixed-Signal Verification Environments to UVM,” DVCon Euro 2014.
[4] “UVM-AMS: A UVM-Based Analog Verification Standard.” [Online]. Available:

https://2021.dvcon.org/presentation/workshop/uvm-ams-uvm-based-analog-verification-standard.
[5] Dančak, “SystemVerilog OOP Testbench (Part 1).” [Online]. Available:

https://www.researchgate.net/publication/346061868_SystemVerilog_OOP_Testbench_for_Analog_Filter_A_Tutorial_Part_1.
[6] Dančak, “SystemVerilog OOP Testbench (Part 2).” [Online]. Available:

https://www.researchgate.net/publication/350412143_SystemVerilog_OOP_Testbench_for_Analog_Filter_A_Tutorial_Part_2.
[7] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com.
[8] J.-E. Jang, et al., “True Event-Driven Simulation of Analog/Mixed-Signal Behaviors in SystemVerilog: A Decision-Feedback Equalizing

(DFE) Receiver Example,” IEEE Custom Integrated Circuits Conference (CICC), Sep. 2012.
[9] Cummings, “OVM/UVM Scoreboards: Fundamental Architectures,” SNUG 2013. §5.
[10] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com/xmodel, FEATURE 2.
[11] Brennan, Ziller et al., “The How To’s of Advanced Mixed-Signal Verification,” DVCon Euro 2015, slide 35.
[12] S. Vasudevan, Practical UVM: Step-by-Step Examples, §13.6.1. San Jose, CA: 2016.
[13] Cummings, “UVM Message Display Commands: Capabilities, Proper Usage and Guidelines,” SNUG Austin 2014. §7.4.1.
[14] Dave Rich blog, About Drain Time in UVM, on Stack Overflow, 26 Dec. 2017. [Online].

Available at: https://stackoverflow.com/questions/47976706/about-drain-time-in-uvm*.
[15] IEEE Std 1800-2017 SystemVerilog Language Reference Manual, §13.3 Tasks.
[16] S. Vasudevan, Practical UVM: Step-by-Step Examples, §7.6. San Jose, CA: 2016.
[17] IEEE Std 1800-2017 SystemVerilog Language Reference Manual, §6.16.9 Atoi().
[18] Cummings, “UVM Message Display Commands: Capabilities, Proper Usage and Guidelines,” SNUG Austin 2014. §8.
[19] IEEE Std 1800-2017 SystemVerilog Language Reference Manual, §7.8 Associative Arrays.
[20] IEEE Std 1800.2-2017 Universal Verification Methodology Language Reference Manual, §16.2.3.3 print_generic.
[21] Bromley& Litterick (Verilab), “Effective SystemVerilog Functional Coverage: design and coding recommendations,” SNUG 2016. §3.1.

