
A Software infrastructure for
Hardware Performance Assessment

Ingo Feldner

Axel Sauer

Tim Kraus

Looking back…

• 15 years+ experience in applying models for SW development

• Covered various use-cases throughout the development cycle

• Added HW details for early IP verification

• Main model drawbacks encountered:
• Availability

• Cost

• Mismatch to HW

• Performance Assessment poses even more challenges on application
of simulation technology 2

Blacklisting

Supply-Chain Security
Vendor Lock-in

Performance

Certification
Processes

CI/CD Integration

Effort TTMMulti-SoC
Automation

V&V Licensing
Business Models

It’s not only the models

3

Algorithm/Software

Increasing complexity, stagnating productivity
Efficient programming required

Realistic HW assessment and
comparison of suppliers

Functional Simulation*

Simulation Use-Cases

Series phaseImplementation phaseConcept phase

(Hybrid) Emulation

Hybrid Simulation*

Architecture Assessment

Heterogeneous domain-specific
Hardware

Specialization, Heterogeneity
Dedicated HW optimization required

How to make
this scale?

Pre-Silicon:
Early functional/timing
Verification of embedded SW
Post-Silicon:
Increase observability and
controllability, reduce cost
Pre-Awarding: Evaluate and
ensure SW performance on
different HW architectures

Situation Today
• Fragmented simulation landscape

hinders broad adoption due to
proprietary data formats and interfaces

• Reduced effectiveness and efficiency
with complex business setups and long
contractual lead times

• Missing flexibility, high invest into
proprietary vendor setup, resulting in
high risk of lock-ins

4

HW IP Supplier N

SW/Workload A

SW/Workload B

SW/Workload C

System Integration

(Company specific setup)

HW IP Supplier 2

HW IP Supplier 1
Tool A

Tool B

Custom Inhouse

Open source

P
ro

p
ri
e

ta
ry

 in
te

g
ra

ti
o
n

P
ro

p
rie

ta
ry

 d
a
ta

 fo
rm

a
ts

What do we need?
• Improved and highly automated

integration on defined data formats

• Definition of secure execution, data
access rights and collaboration
models

• Support of multi-vendor, multi-tool
setups tailored to customer needs

• Scalable business models fitting to
on-demand use of simulation
artefacts 5

Artefacts

Data formats

Infrastructure

HW IP Supplier N
Integration API

HW IP Supplier 2
Integration API

HW IP Supplier 1
Integration API

SW/Workload

API/DSL

API/DSLSW/Workload

Use-Case API/DSL

SW/Workload

Evaluation API

Scalable UNified

RESTful Infrastructure

for System Evaluation

S U N R I S E

Seamless cross-vendor integration against open APIs/DSLs is
key to scale simulation technology

6

IMPORTANT:
SUNRISE is not a tool, it‘s a set of APIs and data formats

The concept

7

User Front-End Infrastructure

Execution EngineUser Specific
Setup

System Execution
Container

User Setup Supplier Setup

Container Integration API

EvalA
P

I

SysA
P

I

Focus: Versatility Focus: ScalabilityFocus: Independence

Scalable UNified

RESTful Infrastructure

for System Evaluation

S U N R I S E

Compute Backend

Orchestration Setup

For more details on API and data formats attend SUNRISE paper presentation:
Session 4D: Deployment of containerized simulations in an API-driven distributed infrastructure

APIs and DSLs

• Role-based approach for
representing responsibilities

• REST APIs for exchange of
data and web-based
interaction

• Containers for defined
integration into cloud and
on-premise use-cases

8

HW IP Supplier
Integration API

SW/Workload

Use-Case API/DSL

Evaluation API

SW developer view
(Algo expert)

HW developer view
(System expert)

Integrators view
(IP expert)

Demo: Evaluation of MINRES TGC core with
SUNRISE

9

User Front-End Infrastructure

Execution EngineJupyter
Notebook

MINRES
TGC5

EvalA
P

I

SysA
P

I

Local Compute Backend

• Demonstrating explicit calls to EvalAPI REST interface via the SUNRISE Client
Python package

• Use-Case: Performance assessment of the MINRES RISC-V TGC5 VP core
• Simulation container prepared by MINRES and integrated according to SysAPI

requirements
• Evaluation of performance done by RB with Jupyter Notebook as user frontend

Challenges

• Definition and acceptance of APIs and DSLs

• Secure Execution and data exchange

• Protection and consideration of IP rights

• Flexible business models and licensing

• Eligibility to access to results

• Co-existence of legacy setups (e.g., assembly, data formats)

• Separation of tooling and IP

• Debugging complex infrastructure setups 10

What do we have?

• Integrator API:
• Commercial and open-source integrations available

• Formats for describing Systems and Configurations of platforms

• Integration user guide

• Evaluation API:
• Simulation of containerized platforms

• Definition of basic result formats

• On-premise and cloud services used

11

What‘s next?

• RB is currently investigating possibilities for disclosure of SUNRISE

• Adding more partners willing to contribute and build community.
Interested?

• Continue work on assembly and analysis APIs together with partners

• Realizing PoCs by adding more IPs to demonstrate scalability and
efficiency

12

Summary

• The goal of SUNRISE is to enable an efficient, scalable and
technology-agnostic methodology by applying established SW
methods to HW assessment

• Defined and reproducible ways of collaboration on premise and/or in
the cloud

• SUNRISE applies modern SW techniques to improve the timely
application of models and tools throughout the design process

• SUNRISE requires an open-source mindset focused on flexibility and
ease of integration of existing IP and tool solutions 13

Questions

The TRISTAN project, nr. 101095947 is supported by Chips Joint Undertaking (CHIPS-JU)
and its members Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Germany, Denmark,
Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Israel, Iceland, Italy, Lithuania,
Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Sweden,
Slovenia, Slovakia, Turkey and including top-up funding by Federal Ministry of Education
and Research, BMBF (Germany).

This work has been developed in the project MANNHEIM-FlexKI. MANNHEIM-FlexKI is
funded by the German Ministry of Education and Research (BMBF)
(reference numbers: 01IS22086A-L). The authors are responsible for the content of this
publication.

Efficient Workflow using Verilator for Processor
Benchmarking in SystemC-based Automotive SoC

Platforms

Johannes Sanwald, Andreas Mauderer, Mohammad
Badawi, Javier Castillo, Jan-Hendrik Oetjens

Andreas Wieferink, Maryam Keeley, Tim Kogel

Motivation & Goal

Motivation

• Increasing complexity of software in automotive edge devices

• Variety of processor IP through emergence of new
architectures like RISC-V

Goal

• Rapid, efficient, and precise performance assessment and
design exploration

• Usable with all processor cores, independent of vendor and
architecture 16

State of the Art

• Full RTL simulation
• Cycle accurate
• High effort to integrate processors and to model peripherals, low simulation speed

• Co-simulation of RTL and SystemC
• High accuracy, easier modeling of peripherals
• High maintenance and integration effort for two simulation environments

• SystemC simulation of ISS or SystemC processor model
• Established approach: Addressing fast, yet accurate, architecture exploration
• Easy integration and modeling of peripherals
• Processor integration still poses obstacles:

• Interfaces not standardized, different TLM protocols, no accurate timing
• Limited availability of cycle-accurate models 17

Approach

• Workflow integrates verilated SystemC model of vendor supplied RTL
• Addresses limited availability of vendor supplied SystemC models

• Enables timing accurate communication

• Compatible with all processors implementing AMBA-compliant interfaces

SystemC

Processor

Model

Processor

RTL
Processor

RTL
SystemC

IP Blocks

Processor

RTL

Simulation and

Evaluation

System-Level

Platform
Verilator

FT TLM2

processor

library block

FT-Trans-

actors

18

Application Example – CVA6 Dhrystone
Benchmarking
• Open-source RISC-V core, maintained

by OpenHW Group

• RV64-IMAC, 6 stage in-order pipeline

• I- and D-caches, with write-through
policy

• AXI5 Interface for connection to
memory and system

• Dhrystone Benchmark as proof of
concept

"CVA6 RISC-V CPU," OpenHW Group, [Online]. Available:
https://github.com/openhwgroup/cva6. [Accessed 22 June 2024] 19

Step 1 – Verilator and CVA6

• CVA6 exposes SystemVerilog
packed structs as interface. We
had to create a wrapper to
expose the AMBA AXI bus
signals as dedicated pins
instead.

• Use Verilator to generate a
SystemC model of the RISC-V
core CVA6

20

Step 2 – Synopsys Platform Architect
Integration
1. Raw SystemC Import 2. Automatic Block

Refinement

Pin Accurate SystemC
Processor Model

FT TLM2
Processor Model

21

Step 3 – Iterative Architecture Optimization
Flow

Platform and workload modelling
and simulation sweep setup …

Hand-off
Are we

done yet?

Root-cause Analysis

22

Sensitivity Analysis

Step 3 – Quantitative Performance Analysis
and Optimization

• Root-cause analysis of performance issues using traces and statistics
• Interpretation of analysis views from CPU performance counters, interconnect,

memory and flash subsystem 23

Application Example – Dhrystone Results

CVA6 Configuration Cycle Count for 10 Runs DMIPS/MHz

No Caches 17165 0,33

Write-through Cache 5167 1,10

1,1

0,33

0 0,2 0,4 0,6 0,8 1 1,2

WT Caches

No Caches

DMIPS/MHz

CVA6 – Dhrystone Performance

24

Summary

• Proposal of an approach for rapid and efficient architecture
exploration

• SystemC as simulation environment because of its efficiency and ease
of modeling for complex peripherals

• Verilator used for generating SystemC processor models with timing-
accurate interfaces from vendor supplied RTL

• Synopsys Platform Architect as SystemC integration and simulation
platform, which provides pin-level to TLM transactors, peripheral IP
blocks, and simulation and analysis tools 25

Outlook

• Study further processors and instruction set architectures

• Model full automotive system-architecture and compare with
equivalent RTL simulation

• Integrate breakpoints and instruction stepping debug features

26

Questions

Acknowledgement
The TRISTAN project, nr. 101095947 is supported by Chips Joint Undertaking (CHIPS-JU)
and its members Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Germany, Denmark,
Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Israel, Iceland, Italy, Lithuania,
Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Sweden,
Slovenia, Slovakia, Turkey and including top-up funding by Federal Ministry of Education
and Research, BMBF (Germany).

Developing performance models using SystemC
Rocco Jonack, MINRES Technologies

Eyck Jentzsch, MINRES Technologies

Implementing ISS using DBT-RISE

• Dynamic Binary Translation - Retargetable ISS Environment

• An Open-Source C++ environment to implement instruction set
simulators (ISS) e.g. using CoreDSL

• DBT-RISE-CORE contains the core elements of DBT-RISE and as such is
intended to be part of a target project

• Different backends can be used to adapt to requirements

• Plugins system allows easy extension

• Easy to embed into SystemC based models

MINRES Technologies GmbH Confidential

DBT-RISE based Platform

MINRES Technologies GmbH Confidential

UART

VM

A
D

A
P

TE
R

G
D

B
 A

d
ap

te
r

SE
R

V
ER

ARCH

UART GPIO SPI PWM RAM

system environment/test bench

PLIC

TGC-VP
Target specific C++

RV32IMAC: ~ 1.5k LOC

Generated C++
RV32IMAC: ~ 6k LOC

Core Specification

SystemC Platform
Model

DBT-RISE-TGC ISS

DBT-RISE
~ 5k LOC

Core DSL
RISC-V: ~ 500 LOC

Platform Spec.

Open-Source Infrastructure for Dynamic Binary Translation (jit compiling) for ISS

DBT-RISE RISC-V VP

UART

VM

A
D

A
P

TE
R

G
D

B
 A

d
ap

te
r

SE
R

V
ER

ARCH

UART GPIO SPI PWM RAM

system environment/test bench

PLIC

TGC-VP

DBT-RISE - Plugins

• Existing Plugin infrastructure

• For example:
• Instruction Tracing

• Coverage Visualization with e.g. lcov

• Profiling with kcachegrind

• Cycle Annotation

• Register Dumping

DBT-RISE - Integration

• Works in any TLM2
based tool
environment, e.g.
Platform Architect

• Plugins allow
tailored integration

DBT-RISE - Backends

• Backend defines
execution speed
• Each curve shows a

different backend

• Speed is measured as
MIPS as function of
iterations over
benchmark Drhystone

• JIT techniques
optimize SW sections
which are executed
repeatedly

DBT-
RISE

Perf.Est.-Plugin

Performance Estimation

• No accurate performance (timing) estimates
for ISS
• ISA-level model: Correct functional behavior

• Microarchitecture not considered

• PerformanceEstimator-Plugin
• Observes instruction trace

• Estimates timing based on microarch. information

• Retarget via CorePerfDSL

• Accuracy >99% @ up to 24 MIPS

Core
DSL

.bin

Monitor

Perf.
Report

Estimator

CorePerf
DSL

Instr. trace

CorePerfDSL

• Compact structural description
• Non-functional
• Focus on flexibility
• External models to represent dynamic

components (e.g. caches, branch pred.)

• Instruction-mapping to match
components to instruction types

• Generator transforms to:
• Single “max-plus” scheduling function for

each instruction type
• Timing variables to represent state of

pipeline

Interconnect Models

• TLM to allow interoperability

• SystemC Components library comes with AT level implementations of
common on-chip protocols

• CCI for configuration
• Provides a standard layer, which some tools build upon

• SCV or LWTR for transaction recording
• Some waveform tools for visualization are available that build on top of them

• Text based analysis possible based on structured format

• SCC library for common elements and logging format

Memory Modeling

• Generic testbench component with AXI slave port
• Configurable latency

• No explicit behavior

• Can be connected once modeled

• DRAMSys for improved accuracy in terms of performance

System Composition using PySysC

• Python Binding for SystemC

• Allows to compose systems using Python

• Beyond support for structural construction, simulation control and
dynamic model parametrization should be supported

• Due to broad availability of Python integrations plenty of libraries can
be used and combined
• Computational models using numpy/scipy etc.

• UIs and cockpits using GTK, wxWidgets or Qt

PySysC Example

1. Instantiation of a module

2. Instantiation of a
templated module

3. Named signal connection

4. TLM2.0 socket connection

5. Simulation run

from cppyy import gbl as cpp

from cppyy.gbl import sc_core

from pysysc.structural import Connection, Signal, Module, Simulation

loading required libraries

...

instantiating modules

clk_gen = Module(cpp.ClkGen).create("clk_gen") ## (1)

initiator = Module(cpp.Initiator).create("initiator")

memories = [Module(cpp.Memory).create(name)

for name in ["mem0", "mem1", "mem2", "mem3"]]

router = Module(cpp.Router[4]).create("router") ## (2)

creating connections

clk = Signal("clk")

.src(clk_gen.clk_o)

.sink(initiator.clk_i)

.sink(router.clk_i) ## (3)

[clk.sink(m.clk_i) for m in memories]

Connection()

.src(initiator.socket)

.sink(router.target_socket) ## (4)

[Connection()

.src(router.initiator_socket.at(idx))

.sink(m.socket)

for idx,m in enumerate(memories)]

run simulation

sc_core.sc_start() ## (5)

Tracing

• Comprehensive tracing allows thorough analysis

• Choose the right formats
• Waveform tracing using efficient implementation and FST format

• Transaction tracing using Light weight transaction recording (LWTR)

• Python allows easy post-simulation analysis
• Pyfst, cbor2 to read FST & LWTR recordings

• Numpy, Pandas to analyze the trace events

• Plotly/Dash to visualize

Analysis of simulation results

• The goal of model simulations is the result analysis

• Type of analysis depends on accuracy of model
• Latency, bandwidth only with cycle accurate/approximate models
• Cache statistics only when caches are modeled

• Common, open-source formats for tracing are important
• VCD, FTS for signals
• Transaction tracing using LWTR

• Reuse of existing frameworks for visualization, post processing and
dashboarding
• Dash, OpenSearch

42

Dashboards

• Trace analysis output
can be used by open-
source visualization
tools like dash

• Python libraries allow
simple analysis and
even simulation control
interfaces

Correlation

• Correlation against RTl models

• Waveform Analysis Language (WAL) to the rescue
• Allows to abstract from signals to transactions

Open-soure offerings I

• SystemC Components Library (SCC)
https://github.com/Minres/SystemC-Components

• PySysC: Python bindings for SystemC, adopted by Accellera
https://github.com/Minres/PySysC/

• CoreDSL: a language to describe ISAs for ISS generation and HLS of
RTL implementation
https://minres.github.io/CoreDSL/

MINRES Technologies GmbH Confidential

https://github.com/Minres/SystemC-Components
https://github.com/Minres/PySysC/
https://minres.github.io/CoreDSL/

Open-soure offerings II

• DBT-RISE: a library for rapid implementation of ISS/VP using dynamic
binary translation
https://git.minres.com/DBT-RISE/

• DBT-RISE-RISCV: application of CoreDSL & DBT-RISE for RISCV
https://github.com/Minres/DBT-RISE-RISCV

• Model code generation for VP based on industry standards like
SystemRDL
https://github.com/Minres/RDL-Editor

• Utility tools & libraries for VP modeling
https://github.com/VP-Vibes/VPV-Peripherals

MINRES Technologies GmbH Confidential

https://git.minres.com/DBT-RISE/
https://github.com/Minres/DBT-RISE-RISCV
https://github.com/Minres/RDL-Editor
https://github.com/VP-Vibes/VPV-Peripherals

Questions?

	Folie 1: A Software infrastructure for Hardware Performance Assessment
	Folie 2: Looking back…
	Folie 3: It’s not only the models
	Folie 4: Situation Today
	Folie 5: What do we need?
	Folie 6: Seamless cross-vendor integration against open APIs/DSLs is key to scale simulation technology
	Folie 7: The concept
	Folie 8: APIs and DSLs
	Folie 9: Demo: Evaluation of MINRES TGC core with SUNRISE
	Folie 10: Challenges
	Folie 11: What do we have?
	Folie 12: What‘s next?
	Folie 13: Summary
	Folie 14: Questions
	Folie 15: Efficient Workflow using Verilator for Processor Benchmarking in SystemC-based Automotive SoC Platforms
	Folie 16: Motivation & Goal
	Folie 17: State of the Art
	Folie 18: Approach
	Folie 19: Application Example – CVA6 Dhrystone Benchmarking
	Folie 20: Step 1 – Verilator and CVA6
	Folie 21: Step 2 – Synopsys Platform Architect Integration
	Folie 22: Step 3 – Iterative Architecture Optimization Flow
	Folie 23: Step 3 – Quantitative Performance Analysis and Optimization
	Folie 24: Application Example – Dhrystone Results
	Folie 25: Summary
	Folie 26: Outlook
	Folie 27: Questions
	Folie 28: Developing performance models using SystemC
	Folie 29: Implementing ISS using DBT-RISE
	Folie 30: DBT-RISE based Platform
	Folie 31: DBT-RISE RISC-V VP
	Folie 32: DBT-RISE - Plugins
	Folie 33: DBT-RISE - Integration
	Folie 34: DBT-RISE - Backends
	Folie 35: Performance Estimation
	Folie 36: CorePerfDSL
	Folie 37: Interconnect Models
	Folie 38: Memory Modeling
	Folie 39: System Composition using PySysC
	Folie 40: PySysC Example
	Folie 41: Tracing
	Folie 42: Analysis of simulation results
	Folie 43: Dashboards
	Folie 44: Correlation
	Folie 45: Open-soure offerings I
	Folie 46: Open-soure offerings II
	Folie 47

