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Looking back…

• 15 years+ experience in applying models for SW development

• Covered various use-cases throughout the development cycle

• Added HW details for early IP verification

• Main model drawbacks encountered: 
• Availability 

• Cost 

• Mismatch to HW 

• Performance Assessment poses even more challenges on application 
of simulation technology 2



Blacklisting

Supply-Chain Security
Vendor Lock-in 

Performance 

Certification
Processes

CI/CD Integration

Effort TTMMulti-SoC
Automation

V&V Licensing
Business Models

It’s not only the models
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Algorithm/Software

Increasing complexity, stagnating productivity
Efficient programming required

Realistic HW assessment and 
comparison of suppliers

Functional Simulation*

Simulation Use-Cases

Series phaseImplementation phaseConcept phase

(Hybrid) Emulation

Hybrid Simulation*

Architecture Assessment

Heterogeneous domain-specific
Hardware

Specialization, Heterogeneity
Dedicated HW optimization required

How to make 
this scale?

Pre-Silicon: 
Early functional/timing 
Verification of embedded SW 
Post-Silicon: 
Increase observability and 
controllability, reduce cost
Pre-Awarding: Evaluate and 
ensure SW performance on 
different HW architectures



Situation Today
• Fragmented simulation landscape 

hinders broad adoption due to 
proprietary data formats and interfaces

• Reduced effectiveness and efficiency 
with complex business setups and long 
contractual lead times

• Missing flexibility, high invest into 
proprietary vendor setup, resulting in 
high risk of lock-ins
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What do we need?
• Improved and highly automated 

integration on defined data formats

• Definition of secure execution, data 
access rights and collaboration 
models

• Support of multi-vendor, multi-tool 
setups tailored to customer needs

• Scalable business models fitting to 
on-demand use of simulation 
artefacts 5

Artefacts

Data formats  

Infrastructure

HW IP Supplier N
Integration API

HW IP Supplier 2
Integration API

HW IP Supplier 1
Integration API

SW/Workload

API/DSL

API/DSLSW/Workload

Use-Case API/DSL

SW/Workload

Evaluation API

Scalable UNified

RESTful Infrastructure 

for System Evaluation

S U N R I S E



Seamless cross-vendor integration against open APIs/DSLs is 
key to scale simulation technology
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IMPORTANT:
SUNRISE is not a tool, it‘s a set of APIs and data formats



The concept
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User Front-End Infrastructure 

Execution EngineUser Specific 
Setup

System Execution 
Container

User Setup Supplier Setup

Container Integration API

EvalA
P

I

SysA
P

I

Focus: Versatility Focus: ScalabilityFocus: Independence

Scalable UNified

RESTful Infrastructure 

for System Evaluation

S U N R I S E

Compute Backend

Orchestration Setup

For more details on API and data formats attend SUNRISE paper presentation: 
Session 4D: Deployment of containerized simulations in an API-driven distributed infrastructure



APIs and DSLs 

• Role-based approach for 
representing responsibilities

• REST APIs for exchange of 
data and web-based 
interaction

• Containers for defined 
integration into cloud and 
on-premise use-cases 
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HW IP Supplier
Integration API

SW/Workload

Use-Case API/DSL

Evaluation API

SW developer view
(Algo expert)

HW developer view 
(System expert)

Integrators view
(IP expert)



Demo: Evaluation of MINRES TGC core with 
SUNRISE
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User Front-End Infrastructure 

Execution EngineJupyter
Notebook

MINRES
TGC5

EvalA
P
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Local Compute Backend

• Demonstrating explicit calls to EvalAPI REST interface via the SUNRISE Client
Python package

• Use-Case: Performance assessment of the MINRES RISC-V TGC5 VP core 
• Simulation container prepared by MINRES and integrated according to SysAPI 

requirements
• Evaluation of performance done by RB with Jupyter Notebook as user frontend 



Challenges

• Definition and acceptance of APIs and DSLs 

• Secure Execution and data exchange

• Protection and consideration of IP rights

• Flexible business models and licensing

• Eligibility to access to results 

• Co-existence of legacy setups (e.g., assembly, data formats)

• Separation of tooling and IP

• Debugging complex infrastructure setups 10



What do we have?

• Integrator API: 
• Commercial and open-source integrations available

• Formats for describing Systems and Configurations of platforms 

• Integration user guide

• Evaluation API:
• Simulation of containerized platforms 

• Definition of basic result formats

• On-premise and cloud services used

11



What‘s next?

• RB is currently investigating possibilities for disclosure of SUNRISE

• Adding more partners willing to contribute and build community.
Interested?

• Continue work on assembly and analysis APIs together with partners

• Realizing PoCs by adding more IPs to demonstrate scalability and 
efficiency 
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Summary

• The goal of SUNRISE is to enable an efficient, scalable and 
technology-agnostic methodology by applying established SW 
methods to HW assessment

• Defined and reproducible ways of collaboration on premise and/or in 
the cloud 

• SUNRISE applies modern SW techniques to improve the timely 
application of models and tools throughout the design process 

• SUNRISE requires an open-source mindset focused on flexibility and 
ease of integration of existing IP and tool solutions  13



Questions

The TRISTAN project, nr. 101095947 is supported by Chips Joint Undertaking (CHIPS-JU) 
and its members Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Germany, Denmark, 
Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Israel, Iceland, Italy, Lithuania, 
Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Sweden, 
Slovenia, Slovakia, Turkey and including top-up funding by Federal Ministry of Education 
and Research, BMBF (Germany).

This work has been developed in the project MANNHEIM-FlexKI. MANNHEIM-FlexKI is 
funded by the German Ministry of Education and Research (BMBF)
(reference numbers: 01IS22086A-L). The authors are responsible for the content of this 
publication.



Efficient Workflow using Verilator for Processor 
Benchmarking in SystemC-based Automotive SoC 

Platforms

Johannes Sanwald, Andreas Mauderer, Mohammad 
Badawi, Javier Castillo, Jan-Hendrik Oetjens

Andreas Wieferink, Maryam Keeley, Tim Kogel



Motivation & Goal

Motivation

• Increasing complexity of software in automotive edge devices

• Variety of processor IP through emergence of new 
architectures like RISC-V

Goal

• Rapid, efficient, and precise performance assessment and 
design exploration

• Usable with all processor cores, independent of vendor and 
architecture 16



State of the Art

• Full RTL simulation
• Cycle accurate
• High effort to integrate processors and to model peripherals, low simulation speed

• Co-simulation of RTL and SystemC
• High accuracy, easier modeling of peripherals
• High maintenance and integration effort for two simulation environments

• SystemC simulation of ISS or SystemC processor model
• Established approach: Addressing fast, yet accurate, architecture exploration
• Easy integration and modeling of peripherals
• Processor integration still poses obstacles:

• Interfaces not standardized, different TLM protocols, no accurate timing
• Limited availability of cycle-accurate models 17



Approach

• Workflow integrates verilated SystemC model of vendor supplied RTL
• Addresses limited availability of vendor supplied SystemC models

• Enables timing accurate communication

• Compatible with all processors implementing AMBA-compliant interfaces

SystemC

Processor 

Model

Processor 

RTL
Processor 

RTL
SystemC

IP Blocks

Processor 

RTL

Simulation and 

Evaluation

System-Level 

Platform
Verilator

FT TLM2 

processor 

library block

FT-Trans-

actors
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Application Example – CVA6 Dhrystone 
Benchmarking
• Open-source RISC-V core, maintained 

by OpenHW Group

• RV64-IMAC, 6 stage in-order pipeline

• I- and D-caches, with write-through 
policy

• AXI5 Interface for connection to 
memory and system

• Dhrystone Benchmark as proof of 
concept

"CVA6 RISC-V CPU," OpenHW Group, [Online]. Available: 
https://github.com/openhwgroup/cva6. [Accessed 22 June 2024] 19



Step 1 – Verilator and CVA6

• CVA6 exposes SystemVerilog
packed structs as interface. We 
had to create a wrapper to 
expose the AMBA AXI bus 
signals as dedicated pins 
instead.

• Use Verilator to generate a 
SystemC model of the RISC-V 
core CVA6
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Step 2 – Synopsys Platform Architect 
Integration
1. Raw SystemC Import 2. Automatic Block

Refinement 

Pin Accurate SystemC
Processor Model 

FT TLM2
Processor Model 

21



Step 3 – Iterative Architecture Optimization 
Flow

Platform and workload modelling 
and simulation sweep setup …

Hand-off
Are we 

done yet?

Root-cause Analysis
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Sensitivity Analysis



Step 3 – Quantitative Performance Analysis 
and Optimization

• Root-cause analysis of performance issues using traces and statistics
• Interpretation of analysis views from CPU performance counters, interconnect, 

memory and flash subsystem 23



Application Example – Dhrystone Results

CVA6 Configuration Cycle Count for 10 Runs DMIPS/MHz

No Caches 17165 0,33

Write-through Cache 5167 1,10

1,1

0,33

0 0,2 0,4 0,6 0,8 1 1,2

WT Caches

No Caches

DMIPS/MHz

CVA6 – Dhrystone Performance 
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Summary

• Proposal of an approach for rapid and efficient architecture 
exploration

• SystemC as simulation environment because of its efficiency and ease 
of modeling for complex peripherals

• Verilator used for generating SystemC processor models with timing-
accurate interfaces from vendor supplied RTL

• Synopsys Platform Architect as SystemC integration and simulation 
platform, which provides pin-level to TLM transactors, peripheral IP 
blocks, and simulation and analysis tools 25



Outlook

• Study further processors and instruction set architectures

• Model full automotive system-architecture and compare with 
equivalent RTL simulation

• Integrate breakpoints and instruction stepping debug features

26



Questions
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Developing performance models using SystemC
Rocco Jonack, MINRES Technologies
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Implementing ISS using DBT-RISE

• Dynamic Binary Translation - Retargetable ISS Environment

• An Open-Source C++ environment to implement instruction set 
simulators (ISS) e.g. using CoreDSL

• DBT-RISE-CORE contains the core elements of DBT-RISE and as such is 
intended to be part of a target project

• Different backends can be used to adapt to requirements

• Plugins system allows easy extension

• Easy to embed into SystemC based models

MINRES Technologies GmbH Confidential



DBT-RISE based Platform

MINRES Technologies GmbH Confidential
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DBT-RISE RISC-V VP
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DBT-RISE - Plugins

• Existing Plugin infrastructure

• For example:
• Instruction Tracing

• Coverage Visualization with e.g. lcov

• Profiling with kcachegrind

• Cycle Annotation

• Register Dumping



DBT-RISE - Integration 

• Works in any TLM2 
based tool 
environment, e.g. 
Platform Architect

• Plugins allow 
tailored integration



DBT-RISE - Backends

• Backend defines 
execution speed
• Each curve shows a 

different backend

• Speed is measured as 
MIPS as function of 
iterations over 
benchmark Drhystone

• JIT techniques 
optimize SW sections 
which are executed 
repeatedly



DBT-
RISE

Perf.Est.-Plugin

Performance Estimation

• No accurate performance (timing) estimates 
for ISS
• ISA-level model: Correct functional behavior

• Microarchitecture not considered

• PerformanceEstimator-Plugin
• Observes instruction trace

• Estimates timing based on microarch. information

• Retarget via CorePerfDSL

• Accuracy >99% @ up to 24 MIPS

Core
DSL

.bin

Monitor

Perf.
Report

Estimator

CorePerf
DSL

Instr. trace



CorePerfDSL

• Compact structural description
• Non-functional
• Focus on flexibility
• External models to represent dynamic 

components (e.g. caches, branch pred.)

• Instruction-mapping to match 
components to instruction types

• Generator transforms to:
• Single “max-plus” scheduling function for 

each instruction type
• Timing variables to represent state of 

pipeline



Interconnect Models

• TLM to allow interoperability

• SystemC Components library comes with AT level implementations of 
common on-chip protocols

• CCI for configuration
• Provides a standard layer, which some tools build upon

• SCV or LWTR for transaction recording
• Some waveform tools for visualization are available that build on top of them

• Text based analysis possible based on structured format

• SCC library for common elements and logging format



Memory Modeling

• Generic testbench component with AXI slave port
• Configurable latency

• No explicit behavior

• Can be connected once modeled

• DRAMSys for improved accuracy in terms of performance



System Composition using PySysC

• Python Binding for SystemC

• Allows to compose systems using Python

• Beyond support for structural construction, simulation control and 
dynamic model parametrization should be supported

• Due to broad availability of Python integrations plenty of libraries can 
be used and combined
• Computational models using numpy/scipy etc.

• UIs and cockpits using GTK, wxWidgets or Qt



PySysC Example

1. Instantiation of a module

2. Instantiation of a 
templated module

3. Named signal connection

4. TLM2.0 socket connection

5. Simulation run

from cppyy import gbl as cpp

from cppyy.gbl import sc_core

from pysysc.structural import Connection, Signal, Module, Simulation

# loading required libraries

...

# instantiating modules

clk_gen = Module(cpp.ClkGen).create("clk_gen")             ## (1)

initiator = Module(cpp.Initiator).create("initiator")

memories = [Module(cpp.Memory).create(name)

for name in ["mem0", "mem1", "mem2", "mem3"]]

router = Module(cpp.Router[4]).create("router")            ## (2)

# creating connections

clk = Signal("clk")

.src(clk_gen.clk_o)

.sink(initiator.clk_i)

.sink(router.clk_i)                                ## (3)

[clk.sink(m.clk_i) for m in memories]

Connection()

.src(initiator.socket)

.sink(router.target_socket)                        ## (4)

[Connection()

.src(router.initiator_socket.at(idx))

.sink(m.socket)

for idx,m in enumerate(memories)]

# run simulation

sc_core.sc_start()                                         ## (5)



Tracing

• Comprehensive tracing allows thorough analysis

• Choose the right formats
• Waveform tracing using efficient implementation and FST format

• Transaction tracing using Light weight transaction recording (LWTR)

• Python allows easy post-simulation analysis
• Pyfst, cbor2 to read FST & LWTR recordings

• Numpy, Pandas to analyze the trace events

• Plotly/Dash to visualize



Analysis of simulation results

• The goal of model simulations is the result analysis

• Type of analysis depends on accuracy of model
• Latency, bandwidth only with cycle accurate/approximate models
• Cache statistics only when caches are modeled 

• Common, open-source formats for tracing are important
• VCD, FTS for signals
• Transaction tracing using LWTR

• Reuse of existing frameworks for visualization, post processing and 
dashboarding 
• Dash, OpenSearch

42



Dashboards

• Trace analysis output 
can be used by open-
source visualization 
tools like dash

• Python libraries allow 
simple analysis and 
even simulation control 
interfaces



Correlation

• Correlation against RTl models

• Waveform Analysis Language (WAL) to the rescue
• Allows to abstract from signals to transactions



Open-soure offerings I

• SystemC Components Library (SCC)
https://github.com/Minres/SystemC-Components

• PySysC: Python bindings for SystemC, adopted by Accellera
https://github.com/Minres/PySysC/ 

• CoreDSL: a language to describe ISAs for ISS generation and HLS of 
RTL implementation
https://minres.github.io/CoreDSL/ 

MINRES Technologies GmbH Confidential
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Open-soure offerings II

• DBT-RISE: a library for rapid implementation of ISS/VP using dynamic 
binary translation
https://git.minres.com/DBT-RISE/

• DBT-RISE-RISCV: application of CoreDSL & DBT-RISE for RISCV
https://github.com/Minres/DBT-RISE-RISCV

• Model code generation for VP based on industry standards like 
SystemRDL
https://github.com/Minres/RDL-Editor

• Utility tools & libraries for VP modeling
https://github.com/VP-Vibes/VPV-Peripherals

MINRES Technologies GmbH Confidential

https://git.minres.com/DBT-RISE/
https://github.com/Minres/DBT-RISE-RISCV
https://github.com/Minres/RDL-Editor
https://github.com/VP-Vibes/VPV-Peripherals


Questions?
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