
A Novel Configurable UVM Architecture 
To Unlock 1.6T Ethernet Verification

Sameh El-Ashry 

Cadence Design Systems



Agenda

01

Overview & Motivation

Industry trends and verification challenges

02

Related Work

Prior research and gaps in automation

03

Ethernet Controller

RTL architecture and configurations

04

Dynamic UVM Generation

Templating and automation flow

05

Case Studies & Results

Metrics, best practices, and lessons learned



The Challenge: Ethernet Verification Complexity1

The problem

• Low-speed and High-speed Ethernet verification (10Mb → 1.6T) is 
complex.

• Multiple RTL configurations (RTL defines, RTL builder tool).

• Manual UVM adaptation → time-consuming, error-prone.

• Goal: fully automated, UVM testbench-matching DUT generation.



The Challenge: Ethernet Verification Complexity2

Key Motivations

• Increasing Bandwidth Demands.

• Verification Complexity.

• Reusable UVM Environments.

• Automation and Efficiency.



Related Work: Filling the Gap

Prior Research
Automatic UVM generation 
from assertions and functional 
verification models.

Critical Gap

Our Innovation

Existing methods do not handle RTL defines 
or macros during UVM generation.

Uniquely supports RTL defines → UVM generation for configurable designs.



Ethernet Controller RTL Overview
• The controller consists of multiple layers: AF → UEC → MAC → PCS → FEC → PMA

• RTL Builder tool generates customized RTL + defines.

• RTL Configurations include:

• SerDes Widths

• Variable data path configurations

• AF/MII Widths

• Configurable interface parameters

• Optional UEC Layer

• Credit-based flow control

• PCS-Only Modes

• Simplified configurations *IEEE Std 802.3



Challenges in Configurable Verification

• Large configuration space → exponential testbench variants

• Time to rewrite top-level files for each config

• Interface mismatches cause debug cycles

• Resource limits → need automation



Dynamic UVM Architecture Generation (Automation Flow)



Templating UVM Components with Configuration Input



UVM Environment – Full Controller



PCS-Only Mode

• AF agent replaced by MII agent

• Virtual sequencer drives PCS-only tests

• Majority of sequences reused from full controller



UEC Extensions

• Credit-based flow control

• LLR replay buffer

• Stimulus adapted from AF agent scenarios



Time Savings from Automation Flow

20
Days Manual

Time required for 10 

configurations using manual 

approach

<1
Minute Automated

Time for same configurations 

with automation flow

3-4
Days Setup

One-time template setup effort

~0%
Error Rate

Negligible errors vs. frequent 

human mistakes

• The automated flow achieves 100% instantiation accuracy with zero rework when switching 
between configurations. New configs are essentially free after initial template investment.



Best Practices

• Separate templated vs parameterized components.

• Keep JSON as single source of truth.

• Automate RAL generation (reg-verifier).

• Use Continuous Integration (CI) pipeline for nightly configs 
regressions.

• Gradually expand automation scope.



Results and Challenges
METRIC MANUAL FLOW

PROPOSED AUTOMATED 
FLOW

Top-level testbench creation time (per 
config)

1–2 days seconds

Human errors in port/interface 
connections

High (frequent debug cycles) Negligible

Effort to switch between full and PCS-
only mode

Manual rework Zero rework

Number of supported DUT configurations 1–2 feasible manually 10+ handled with ease

Reuse of sequences between 
configurations

Partial High, via virtual sequencer

Required testbench maintenance High (per variant) Centralized and minimal

Parameterized UVM agent/scoreboard 
support

Manual setup per config Pre-built and reusable



Scalability to Other IPs

• Approach can be reused for:
• Custom memory controllers (with varying data widths, burst sizes, or ECC 

enablement).

• PCIe Controller (e.g., Configurable as Root Port or Endpoint with varying lane 
width, speed and data path width).

• SoC peripherals (UART, SPI, I2C with parameterized FIFO depths, number of 
instances, etc.).

• DMA engines (supporting multiple channels, memory-mapped, and streaming 
modes).

• AI/ML accelerators (with changing compute array sizes, interfaces, or 
hierarchy depth).



Lessons Learned

• Automation saves effort but requires upfront design.

• Templates must be carefully tested.

• Parameterization complements templating.

• Collaboration with designers is key.



Conclusion

• Automated flow enables UVM testbenches-matching DUT

• Time savings: days → seconds

• Reusable across configs and IP types

• Paves way for scalable DV of complex controllers



Questions


	Slide 1: A Novel Configurable UVM Architecture To Unlock 1.6T Ethernet Verification  
	Slide 2: Agenda
	Slide 3: The Challenge: Ethernet Verification Complexity1  The problem
	Slide 4: The Challenge: Ethernet Verification Complexity2  Key Motivations
	Slide 5: Related Work: Filling the Gap
	Slide 6: Ethernet Controller RTL Overview
	Slide 7: Challenges in Configurable Verification
	Slide 8: Dynamic UVM Architecture Generation (Automation Flow)
	Slide 9: Templating UVM Components with Configuration Input
	Slide 10: UVM Environment – Full Controller
	Slide 11: PCS-Only Mode
	Slide 12: UEC Extensions
	Slide 13: Time Savings from Automation Flow
	Slide 14: Best Practices
	Slide 15: Results and Challenges
	Slide 16: Scalability to Other IPs
	Slide 17: Lessons Learned
	Slide 18: Conclusion
	Slide 19: Questions

