(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

A Novel Configurable UVM Architecture
To Unlock 1.6T Ethernet Verification

Sameh El-Ashry
Cadence Design Systems

cadence

Agenda

01 02 03

Overview & Motivation Related Work Ethernet Controller

Industry trends and verification challenges Prior research and gaps in automation RTL architecture and configurations
04 05
Dynamic UVM Generation Case Studies & Results
Templating and automation flow Metrics, best practices, and lessons learned

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFEREN CE AND EXHIBITION

The Challenge: Ethernet Verification Complexity

The problem

* Low-speed and High-speed Ethernet verification (10Mb - 1.6T) is
complex.

* Multiple RTL configurations (RTL defines, RTL builder tool).
* Manual UVM adaptation - time-consuming, error-prone.
* Goal: fully automated, UVM testbench-matching DUT generation.

The Challenge: Ethernet Verification Complexity?

Key Motivations

* Increasing Bandwidth Demands.
* Verification Complexity.
* Reusable UVM Environments.

 Automation and Efficiency.

Related Work: Filling the Gap

—
=]

Prior Research Critical Gap

Automatic L_JV|V| generatiqn Existing methods do not handle RTL defines
from assertions and functional or macros during UVM generation.

verification models.

Our Innovation
Uniquely supports RTL defines - UVM generation for configurable designs.

Ethernet Controller RTL Overview

* The controller consists of multiple layers: AF - UEC - MAC - PCS - FEC - PMA

e RTL Builder tool generates customized RTL + defines.

e RTL Configurations include: ETHERNET
osl LAYERS
|
. REFERENCE
e SerDes Widths MODEL HIGHER LAYERS
o V . bl d h f . LAYERS / LLC OR OTHER MAC CLIENT
ariable data path configurations pr— j G CONTROL OFTIONAL)
PRESENTATION / MAC
PY AF/M" Widths SESSION / / RECONCILIATION
. : // soocmMil —p 1.6TMII —»
e Configurable interface parameters TRANSPORT | / / — -
/
NETWORK / / PMA } PHY PMA } PHY
e Optional UEC Layer DATALINK | / PMD PMD
e Credit-based flow control PHYSICAL | _ _ _ _ M= Mol —»
MEDIUM MEDIUM <
__\/__/ '\.__.__Y____,J
e PCS-Only Modes BOOGBASE 1.6TBASE
e Simplified configurations

(2025

DESIGN AND VERIEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Challenges in Configurable Verification

* Large configuration space - exponential testbench variants
* Time to rewrite top-level files for each config
* Interface mismatches cause debug cycles

e Resource limits > need automation

Dynamic UVM Architecture Generation (Automation Flow)

Makefile Target

Design Side
SubSystem RTL)

» Compile Target

IPXACT .
& reg_verifier > RAL Model

," RTL Defines Verification Side
' N
default_cfgs.json . Rendered UVM
Defines_parser.py

Testbench Top Level
- S

Customer
CFG File

updated_cfgs.jso

»
P

e e Parametrized UVM

Environment

UVM_TB_TOP.sv.j2
VIP_LINK_INTERFACE.sv.j2 \ Components

A 4

DUT _CFG.sv.j2

Sample Default JSON Sample Updated JSON
{ {
"srd_if width": W1, "srd_if width": W2,
“port_width": W3, “port_width": W3,
"num_mii_bytes": N, ‘ "num_mii_bytes": 2N,
"num_ports": 0, "num_ports": 1,
"max_port_rate": 0, "max_port_rate": 800,
"min_port_rate":0 "min_port_rate": 200
} }

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Templating UVM Components with Configuration Input

Sample Default JSON

Sample Updated JSON
(default_cfg.json)

(updated_cfg.json)

"srd_if_width": W1, "srd_if width": W2,

“Nnum_mii_ports™: X, “Nnum_mii_ports": 2X,
"num_mii_bytes": N, "num_mii__bytes™: 2N,
“pcs_only": 0, “pcs_only": 1,

"max_port_rate": 0, "max_port_rate”: 800,
"min_port_rate":0

"min_port_rate": 200
}

~~

Jinja2

{% if pcs_only %}

{% for N in range(num_mii_ports) %}

{% for M in range (num_mii_bytes) %}
always @(*) tx_pcs_ctri[{{MN}}[{{num_mii_bytes -1 - M}}] = mii_tx_if_{{N}}.txc[{{num_mii_bytes -1 - M}}];
assign mii_rx_if_{{N}}.txc[{{num_mii_bytes -1 - M}}] = rx_pcs_ctri[{{N}][{{num_mii_bytes -1 - M}}]:

{%% endfor %}

{% endfor %o}
{% endif %}

always @(*) tx_pcs_ctrl[0][127] = mii_tx_if O.txc[127];
assign mii_rx_if_0.txc[127] = rx_pcs_ctrl[0][127];
always @(*) tx_pcs_ctrl[0][126] = mii_tx_if O.txc[126];
assign mii_rx_if_0.txc[126] = rx_pcs_ctrl[0][126];
always @(*) tx_pcs_ctrl[0][125] = mii_tx_if O.txc[125];

SystemVerilog Output
always @(*) tx_pcs_ctrl[O][0] = mii_tx_if_O.txc[0];
assign mii_rx_if_0.txc[0] = rx_pcs_ctrl[O][0];

(2025

DESIGN AND VERIFEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

UVM Environment — Full Controller

UVM_TOP_LEVEL

4 TOP_SB N\
> TX Path Scoreboard «
» RX Path Scoreboard N
NG "

MAC+PCS+PMA

TX_SRD_SERIAL

Serdes
BFM

o

RX_SRD_SERIAL

PMA+PCS+MAC

Agent

Passive
VIP
Agent

PMA+PCS+MAC

(2025

DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

PCS-Only Mode

* AF agent replaced by MIl agent
* Virtual sequencer drives PCS-only tests
* Majority of sequences reused from full controller

RX Path Scoreboard

UVM_TOP_LEVEL
e TOP_SB \
L(TX Path Scoreboard]
[)
(J

UEC Extensions

* Credit-based flow control
* LLR replay buffer
e Stimulus adapted from AF agent scenarios

UVM_TOP_LEVEL
/ TOP_SB \
N TX Path Scoreboard *

)
J
RX Path Scoreboard]

+MAC+PCS+

SRD Active

VIP
Agent

Serdes
BFM

RX_SRD_SERIAL

1

U Passive
VIP

Agent

Time Savings from Automation Flow

20 <1 3-4 ~0%

Days Manual Minute Automated Days Setup Error Rate
Time required for 10 Time for same configurations One-time template setup effort Negligible errors vs. frequent
configurations using manual with automation flow human mistakes
approach

 The automated flow achieves 100% instantiation accuracy with zero rework when switching
between configurations. New configs are essentially free after initial template investment.

/ | D L DESIGN AND\QQ'F'OQN &
/ ' DVCON

CONFEREN CE AND EXHIBITION

Best Practices

e Separate templated vs parameterized components.
» Keep JSON as single source of truth.
* Automate RAL generation (reg-verifier).

e Use Continuous Integration (Cl) pipeline for nightly configs
regressions.

* Gradually expand automation scope.

Results and Challenges

METRIC MANUAL FLOW PROPOSED AUTOMATED

FLOW
Top-_level testbench creation time (per 1-2 days seconds
config)
Human errors in port/interface . ..
connections High (frequent debug cycles) Negligible
Effort to switch between full and PCS- Manual rework Zero rework
only mode
Number of supported DUT configurations 1-2 feasible manually 10+ handled with ease
Reus_e i sequences DRI Partial High, via virtual sequencer
configurations
Required testbench maintenance High (per variant) Centralized and minimal
Raapstoreet LMoL Seseboais Manual setup per config Pre-built and reusable

support

/ | D L DESIGN AND\QQ'F'OQN &
/ ' DVCON

CONFERENCE AND EXHIBITION

Scalability to Other IPs

e Approach can be reused for:

e Custom memory controllers (with varying data widths, burst sizes, or ECC
enablement).

* PCle Controller (e.g., Configurable as Root Port or Endpoint with varying lane
width, speed and data path width).

e SoC peripherals (UART, SPI, 12C with parameterized FIFO depths, number of
instances, etc.).

 DMA engines (supporting multiple channels, memory-mapped, and streaming
modes).

Al/ML accelerators (with changing compute array sizes, interfaces, or
hierarchy depth).

Lessons Learned

e Automation saves effort but requires upfront design.
* Templates must be carefully tested.
* Parameterization complements templating.

* Collaboration with designers is key.

Conclusion

e Automated flow enables UVM testbenches-matching DUT
* Time savings: days - seconds
* Reusable across configs and IP types

* Paves way for scalable DV of complex controllers

Questions

	Slide 1: A Novel Configurable UVM Architecture To Unlock 1.6T Ethernet Verification
	Slide 2: Agenda
	Slide 3: The Challenge: Ethernet Verification Complexity1 The problem
	Slide 4: The Challenge: Ethernet Verification Complexity2 Key Motivations
	Slide 5: Related Work: Filling the Gap
	Slide 6: Ethernet Controller RTL Overview
	Slide 7: Challenges in Configurable Verification
	Slide 8: Dynamic UVM Architecture Generation (Automation Flow)
	Slide 9: Templating UVM Components with Configuration Input
	Slide 10: UVM Environment – Full Controller
	Slide 11: PCS-Only Mode
	Slide 12: UEC Extensions
	Slide 13: Time Savings from Automation Flow
	Slide 14: Best Practices
	Slide 15: Results and Challenges
	Slide 16: Scalability to Other IPs
	Slide 17: Lessons Learned
	Slide 18: Conclusion
	Slide 19: Questions

