
A Methodology for Interrupt
Analysis in Virtual Platforms

Puneet Dhar

© Accellera Systems Initiative 1

Agenda

• Introduction

• Interrupts in Virtual Prototyping

• Challenges in Debugging Interrupts

• Proposed Analysis Methodology

• RH850 Adaptation

• Conclusions

© Accellera Systems Initiative 2

Pre-Requisites

• Basic understanding of

– System C scheduling

– Temporal Decoupling

– Interrupt Handling in Instruction Set Simulators (ISS)

© Accellera Systems Initiative 3

Introduction

• An interrupt is a request to the processor to suspend
its current program and transfer control to the
Interrupt Service Routine (ISR).

• A developer must know if the design is

– Processor intensive

– Interrupt intensive

• Interrupt handling should be

– Timely (esp. when safety critical)

– Memory and processor efficient

© Accellera Systems Initiative 4

Interrupts in Virtual Prototyping

• A key usecase of any Virtual Prototype(VP) is system software
development

• Use of Interrupts is common in system software

• Important for developers to understand interrupts and prevent
associated issues – interrupt overloading, stack overflows etc.

• Empirically its known, interrupts

– Hard to get completely right

– Difficult to track down

With right means, VP can be a powerful tool to design efficient
software for interrupt based systems

© Accellera Systems Initiative 5

Challenges in Debugging Interrupts

• Peculiar/rare preconditions

• Multiple sources and sinks

• Interrupt Enable/Disable

• Masks/Priority settings

• Missed Interrupts

• Separate Execution Flow

• Nested Interrupts, Reentrancy

• Context management/Stack Corruption

• Multi-level ISR, Delayed Procedural Calls (DPC)

• Unnoticed Faults/Violations/Traps

© Accellera Systems Initiative 6

Additional challenges in a VP

If the VP uses temporarily decoupled ISS :

• Interrupts are only handled at quantum boundaries.

• Interrupts external to VP (e.g. pulse from USB) can
be missed

• A large static quantum leads to

– Loss of Inter Processor Communication

– Missed Peripheral Interrupts

– Timing Issues

© Accellera Systems Initiative 7

Shortcomings in existing methodology

• Investigate various traces
– Debug Log trace

– Instruction, function, register trace

– Pin Value trace

• Verify correct execution by
– Assembly level debugging

– Putting breakpoints on pins/registers/instructions

– Examining values in pins, registers

• Manual, time and effort intensive
– Sparsely distributed information

– Time to converge to actual issue may take multiple days

© Accellera Systems Initiative 8

A solution helps if it

• Is easy to integrate with an ISS

• Meaningfully presents the distributed information on

– Events, register settings and actual handling

– Latencies and execution of ISR

– Missed/Pending/Masked interrupts

• Helps developer assess if it’s an interrupt related
problem

• Helps developer to profile the software

© Accellera Systems Initiative 9

Proposed Interrupt Analyzer based
Methodology

© Accellera Systems Initiative 10

A Quick Glance

© Accellera Systems Initiative 11
DB

ISS
INTERRUPT

ANALYZER

AnalyzerIfISS Pushes Event

Information Flow

IssIf
Analyzer Pulls Information

How to integrate an ISS
Implement an IssIf to

– Register interrupt capabilities

• HW , SW Interrupts

• No. of channels for HW

• HW IRQ pins

• HW ACK pins

• ISR Addresses

– Allow Analyzer to fetch

• Core Time

• Register Values

• Program Counter

• Pin Values

Use AnalyzerIf to

– Signal Pin Events:

• IRQ

• ACK

– Signal ISR Event:

• Request check/Notify
for ISR entry

• Notify returns from ISR

© Accellera Systems Initiative 12

Implementation Overview

© Accellera Systems Initiative 13

ISS ANALYZER

AnalyzerIf IssIf

Analysis ISS Interface
(PULL Interface)

• Pull Initial information on
• Interrupt Names
• HW/SW type
• Channel Nos.
• Register Set
• ISR Address Strategy

• Pull information at
relevant PUSH Events
• Core Time
• Program Counter Info
• Register Values
• Pin Values

Analyzer Interface
(PUSH Interface)

• Push Interrupt Request

• Push Acknowledgement

• Request ISR Entry Check

• Push ISR Exit

Output: Informatics

© Accellera Systems Initiative 14

Analysis Elements Details covered

Pin Events IRQ, ACK, Messages

ISR Events Entry, Exit, Fall-Through

Latencies ACK Response, ISR Duration
(DPC not covered)

IRQ Special Events Masked IRQ, Pending IRQ,
Missed IRQ

Register Set Mask, Status and Cause
registers

Timeline Chart
Interrupt states
• Interrupt Request (e.g. For RH850 FEINT, EIINT)
• Acknowledgement (ACK)
• No Hardware Interrupt(NO_HW_INT)

CPU States
• NORMAL Execution
• ISR
• ISR_EXIT
• ISR_FALLTHROUGH

Pin Events

© Accellera Systems Initiative 16

Information Table

CoreTime Registers

ISR Duration
computed at ISR

Exit
Response Time at
Acknowledgment Utilization

Example 1 from Use Cases

RH850 Based Adaption

• A platform with Renesas RH850 ISS interfaced with
an interrupt controller and peripherals

• Quantum: Both dynamic and static configurations

• Virtual Platform is designed running in Synopsys
Virtualizer environment

© Accellera Systems Initiative 17

Platform in use

© Accellera Systems Initiative 18

Example Use Cases

© Accellera Systems Initiative 19

(1) Analyzing a HW Interrupt:

© Accellera Systems Initiative 20

Normal
Execution

Interrupt Request Acknowledgment

ISR Execution
Starts

ISR Exit

(2) Analyzing Nested Interrupts

© Accellera Systems Initiative 21

INT5

INT4

INT3

INT2

INT1

INT

ACK

ACK

INT6

ACK

ACK

ACK

ACK

ACK

ISR Starts
Nested ISR
Execution

ISR Fall
Through

ISR Exit
Normal

Execution
Last

ISR Exit

(2) Analyzing Nested Interrupts

© Accellera Systems Initiative 22

(3) Analyzing Missed Interrupts

© Accellera Systems Initiative 23

INT_0
(High Priority)

INT_0 ACK

INT_1
(a)

INT_1 (b),
(a) was not serviced

MISSED
INT_1

INT_1(b) is
taken

INT_1(b)
ISR taken

INT_0 ISR INT_0 ISR

INT_0
ACK

(4) Analyzing Pending Interrupts

© Accellera Systems Initiative 24

INT_0

ACK

ISR Starts,
disables interrupts.
HW timer stopped

INT_1

Interrupt assertion
activates a HW timer.

INT_1 assertion
reactivates HW

timer

Interrupt Disabled => Interrupt Pending

Timer expires,
terminates
simulation

Conclusions

Analyzer consolidates the distributed debugging
techniques and helps
• Organize interrupt data in tables

• Graphically assess interrupt handling

• Point out interrupt anomalies

• Track software exceptions

• Expedite debugging and profiling

• Expedite setting of optimal static quantum

• Present a post-silicon use case for debugging interrupt
issues

© Accellera Systems Initiative 25

Questions

© Accellera Systems Initiative 26

