
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

A Low Maintenance Infrastructure to Jumpstart 
CPU Regression and Performance Correlation

Thomas Soong, Christopher Browne, Chenhui Huang
Intel Corporation

Surge’s Key Innovations

Surge’s Jumpstart Ingredients

The following components need to be properly initialized 
for successful RTL jumpstart:

 Uncore BFM transactions
 Core Architectural and uArch States
 Golden Reference Model

More In Paper

Jumpstart with silicon capture traces
Performance correlation in simulation and emulation
Surge’s trade off
Surge’s overall maintenance cost during E-core

development

Surge’s Key Reuse Components

FastSim: E-core’s fast functional high-level model of its
CPU design. Used for testing uArch features and
prototyping

Archsim:Golden ISA reference simulator. Model’s x86.
C6 Power State: Native ISA feature where the

processor state is saved into a dedicated SRAM before
voltage to core is reduced to zero. When exiting C6, the
processor state is restored back from the SRAM.

Surge is utilized on Intel E-core validation to achieve the 
following:
Jumpstart CPU Core simulation and emulation to any

architectural boundary

Achieve 40% simulation speedup by jumpstarting into
critical test section

Resilient to design changes due to its small code base
and reuse of processor ISA features

Reliably conduct performance correlation from silicon
captured traces

Surge’s Core Simulation Jumpstart Workflow

Performance Result

Workflow Breakdown

All test content are first run quickly under FastSim and then
seamlessly migrated to RTL simulation
Step1: The test content is run until the user-defined
boundary point.
Step2: Test run in FastSim

a) FastSim injects C6 power state entry command
and executes the C6 save flow. FastSim exports
the C6 SRAM contents to file.

b) The uncore BFM produce an external log
containing all its transaction request.

c) Archsim’s save routine snapshot its architectural
image. This will allow Surge to keep RTL and
Archsim in sync after CPU jumpstart is completed.

Step3: In RTL simulation
a) SVTB code to inject the saved C6 data into RTL’s

physical C6 SRAM. Subsequently, an injection
triggers a C6 restore which loads all the
architectural and microarchitectural core states
back into the CPU simulation.

b) the CPU simulation’s uncore BFM states is
restored by replaying uncore request log

c) Archsim state is restored from the saved image.
Core simulation/emulation will continue executing from
where FastSim left off.


