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Abstract- Surge is a low-maintenance RTL jumpstart mechanism that works on any architectural boundary for CPU 
simulation. Surge's design makes it resilient to frequent RTL rewrites and design changes. It has a small code base to 
maintain, supports multicore, and is compatible with all soft IP configurations. Legacy RTL jumpstart mechanisms relied 

on a specialized SVTB module with a detailed mapping of every architectural state to its microarchitectural (µArch) 
counterpart. The legacy jumpstart module must understand every relevant signal path, register shadow copy, and array 
configuration; this results in monolithic code that frequently breaks due to µArch changes. Surge utilizes the CPU's 

functional high-level model and legacy CPU power state feature to abstract out the µArch dependencies. Under Surge, 
any test will first run very fast under E-core’s [1] (formerly known as Intel Atom) functional model to the point of interest 
then seamlessly migrate to RTL simulation. As a result, Intel E-core validation skips the RTL simulation cycles spent on 

test setup and E-core performance team can more reliably complete performance correlation simulation. 

 

I.   INTRODUCTION 

 

Pre-Silicon RTL simulation is comprehensive and consequently infamous for being slow. During the 

development of Intel E-core processor, we created Surge, a new versatile mechanism to jumpstart the CPU RTL 

simulation into any architectural boundary. Surge has many immediate benefits. First, the Pre-SI validation team can 

considerably shorten the total CPU simulation cycles by jumpstarting directly into the critical section of any test 

content. This ability is especially useful for IA32 features that have long preamble routines, such as Intel’s Software 

Guard Extension (SGX) [2] and Virtual Machine Extension (VMX) [3]. Second, Surge provides a more streamlined 

jumpstart to maximize efficiency for correlating E-core’s RTL performance data against our high-level performance 

model.  

The biggest challenge of jumpstarting any RTL simulation is to map the architectural states with their 

corresponding microarchitectural equivalent and inject them into the simulator. Traditional jumpstart mechanism 

previously used by E-core team has a hardcoded mapping of architectural states to µArch signals or arrays. This 

complicated jumpstart tool requires routine updates and regular debug to keep up with E-core’s frequent design 

changes. For example, mundane design optimization that introduces new shadow copy of control register will break 

the legacy jumpstart unless it is made aware of the change. The maintenance cost can be further exacerbated when 

RTL undergoes significant rewrite in ambitious project even for legacy features. The high maintenance cost also 

takes bandwidth away from traditional validation work. 

Under Surge, any architectural test will run very quickly under E-core’s functional model to the point of 

interest, then seamlessly migrate to RTL simulation. As a result, E-core validation skips the slow RTL simulation 

cycles spent on test setup and the E-core performance team can more reliably complete performance correlation 

simulation. Surge is resilient to frequent RTL and firmware changes. Surge’s resiliency stem from its small low-

maintenance code base that takes advantage of existing processor ISA features technologies, such as power 

management sleep states and system management interrupt as well as validation collateral, such as our system agent 

(uncore) BFM and CPU functional model. Surge can migrate a high-level functional simulation run to a low-level 

RTL simulation without maintaining a complex architectural to microarchitectural mapping. It is the current tool 

used by E-core to increase simulation performance by up to 40% on pre-silicon regression run. It is used by E-core 

to conduct performance correlation on captured silicon trace without any disruption caused by RTL changes during 

project development. 
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II.   BUILDING SURGE FOR FASTER CPU SIMULATION 

 

There are four main ingredients necessary to successfully jumpstart a trace mid simulation onto a CPU 

RTL simulation: 

 

1) A fast high-level functional model of the CPU 

2) Ability to capture and migrate all architectural and microarchitectural states from each core 

3) Ability to capture and migrate all states in the uncore BFM 

4) Synchronize the ISA golden reference model with the jumpstart state 

 

E-core maintains a fast functional high-level model of its CPU design called FastSim for prototyping, 

development, and testing microarchitectural features, which facilitates efficient sharing of design, debug, and 

validation components across E-core projects. Jumpstarting CPU RTL simulation to any macro boundary from 

FastSim has always been a goal on our projects. This would significantly shorten pre-silicon simulation time by 

shortcutting the setup code instructions common in our test generators. 

To easily capture all architectural and microarchitectural states from FastSim and restore them on CPU 

simulation, Surge takes advantage the CPU design’s native power management C6 sleep feature [4], where the 

processor state is saved into a dedicated Static RAM or SRAM before voltage to core is reduced to zero. When 

exiting C6, the processor state is restored back from the SRAM. By injecting a C6 power state request into FastSim, 

Surge can initiate a transition into the C6 power state on any architectural boundary. As part of the C6 power state 

specification, all the necessary IA32 architecture states and microarchitectural states are saved into the C6 SRAM. 

The data in the C6 SRAM is later used to perform a CPU state recovery in the Surge jumpstart flow. 

Both FastSim and CPU simulation shares the same uncore BFM. Migrating the uncore states from FastSim 

to core simulation is done through a save and restore of uncore states across both environments. The uncore BFM 

was updated to produce an external log containing all its transaction request. To restore, the CPU simulation’s 

uncore BFM states, Surge replays FastSim’s request log before the start of the simulation. This simple addition of 

logging and replaying uncore transactions allowed us to migrate uncore states across both environments. 

A key component for CPU core validation is the ability to check architectural states against the golden ISA 

reference simulator, Archsim. Unlike FastSim, which models the E-core microarchitecture, Archsim models only the 

x86 instruction set. Both Archsim and CPU RTL simulation need to be synchronized after Surge jumpstart. Surge 

triggers Archsim’s software save subroutine when the C6 power event is delivered in FastSim. After CPU jumpstart 

is completed, Archsim’s states are recovered with its software restore routine to keep both simulators consistent. 
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Figure 1: Flow chart of how SURGE migrates FastSim state to jumpstart CPU simulation 



 

 

To use Surge, the user first identifies an architectural boundary point, normally a specific linear instruction 

pointer (LIP) from the test content. FastSim simulates the test content up until the boundary point and jumpstarts the 

RTL simulation afterwards. All the preparation work for the jumpstart is done in FastSim by reusing existing 

validation collateral and repurposing legacy architectural features. As shown in Figure 1: 

 

Step 1:  The test content is run until the user-defined boundary point. 

Step 2:  After the boundary point, FastSim injects a C6 power state entry command. The CPU model                 

executes the C6 save flow, which saves all critical states into the C6 SRAM. Upon C6 save completion, 

FastSim exports the C6 SRAM contents to a file. 

Step 3:  In parallel with Step 2, Surge invokes Archsim’s save routine to snapshot its architectural image. This 

will allow Surge to keep RTL and Archsim in sync after CPU jumpstart is completed. 

Step 4:  In RTL simulation, Surge invokes SystemVerilog testbench code to inject the previously saved C6 

SRAM data into RTL’s physical C6 SRAM. Subsequently, an injection power management module 

triggers a C6 restore which loads all the architectural and microarchitectural core states back into the 

CPU simulation. A monitor event is triggered at the end of the C6 restore, and CPU simulaton will start 

executing from where FastSim left off. 

Step 5:  In parallel with the C6 restore, Archsim is restored using the saved Archsim image. 

Step 6:  After this point, the test will continue on like a normal CPU VCS run. 

 

The deployment of Surge allowed the E-core validation team to easily migrate long IA32 tests to the CPU 

simulation model. More important, only the critical sections of the test content are exercised on the CPU model, 

allowing the user to expedite simulation results by skipping the time-consuming test setup code especially for 

complex IA32 features such as Intel’s Trusted Execution Technology (TXT) [5]. 

 

III.   EXTENDING SURGE FOR ARCHITECTURAL TRACE 

 

To validate the CPU’s performance in pre-silicon, E-core’s performance team runs “snippets” of real-world 

content on the RTL model as well as the performance timing model to compare their respective IPC. These snippets 

are small windows of instructions taken from larger benchmarks or customer workloads. Because they necessarily 

start in the middle of execution, they are unlike normal validation content and require us to preload both 

architectural (e.g. the instruction pointer) and microarchitectural state (e.g. cache contents) into the RTL model prior 

to simulation. 

The initial architectural state for the snippet is available in an ArchXML file. Historically, a homegrown 

script called Perf_JS was used to inject the architectural state into the model. The legacy script parses the ArchXML 

file and performs signal injections into the RTL at runtime. However, this requires Perf_JS to encompass all the 

complexity of mapping architectural state to project-specific microarchitecture. Whenever the RTL changes, Perf_JS 

needs to be updated to reflect new structures and locations of architectural state. The onus is put mostly on RTL 

designers, who must update things like signal paths and bit swizzling schemes in Perf_JS before they can commit 

RTL edits. 

Surge replaced Perf_JS to save this cost. Instead of maintaining a mapping of architecture states to their 

corresponding RTL signal or shadow copies for injection, Surge recovers these states from the ArchXML file. 

ArchXML contains only architectural states which are too high level to be loaded directly into FastSim. A more 

robust method was needed to simplify the complexity of mapping architectural state to processor-specific 

microarchitecture which FastSim can understand. Surge solved it by adopting an Archsim run followed by a FastSim 

run to create the C6 SRAM image needed to jumpstart the CPU simulation from the snippet initial states.  

System Management Interrupt [6], SMI, allows IA32 processors to enter System Management Mode 

(SMM). This transition saves most of the important architectural states into the reserved memory state save area 

known as System Management RAM or SMRAM. However, some architectural states, which are critical for 

performance correlation, are not present in the SMRAM. Surge utilizes a custom SMI handler to save these extra 

states through simple x86 assembly instructions, such as RDMSR and XSAVE. Figure 2 illustrates a sample SMI 

handler which contains both a save and a restore routine. The save routine is executed in standalone Archsim after 

loading the snippet and saves all important extended architectural states into an unused memory region. The restore 

routine is executed in FastSim and does the opposite, by restoring all the extended states back to the processor as 

well as everything stored in the SMRAM. The restore routine reads the MSR value from memory and uses WRMSR 

instructions to restore these states. The XRSTOR instruction restores all the extended states back the processor. 

Finally, the SMI restore handler executes the RSM instruction to recover everything stored in SMRAM back to the 



 

 

processor. The restore routine is executed in FastSim. Figure 2 details the steps for Surge to jumpstart from the 

architecture snippet to the CPU VCS simulation. 

 

Step A:  Surge combines the snippet memory image with the SMI handler to generate a new memory image. 

Archsim loads the memory image together the ArchXML file in standalone mode. A SMI event is 

injected into Archsim immediately after the memory image and ArchXML file are loaded, which 

triggers the SMI handler’s save routine. At the end of save routine, Archsim will dump its entire 

memory containing both SMRAM image and additional save states from the PSMI save routine into 

the “smi.ami” file. 

Step B:  FastSim loads smi.ami, triggers a SMI immediately, and executes the SMI handler’s restore routine. 

The restore routine enables FastSim to bootstrap its architectural states from the ArchXML file while 

having all of its microarchitecture states consistent and properly initialized. Upon exiting the SMI 

restore handler, a C6 sleep event is injected to trigger the C6 save flow. 

Step C:  The final step is the same as the second half of Figure 1. In short, SVTB code loads FastSim’s C6 

SRAM data into the CPU. The CPU simulation initiates C6 restore and continues with the trace 

simulation. 
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Figure 2: Surge jumpstart of CPU simulation with architectural snippet 



 

 

 
 

Figure 3: Surge average simulation savings 

 

IV.   RESULT 

 

In general, Surge provided significant increase to the overall test throughput of E-core’s pre-silicon 

simulation. As mentioned before, Surge allows RTL simulation to skip over all the uninteresting test configuration 

routines, such as memory initializing, mode transitions, I/O programming, etc., and start immediately executing the 

random code block. Figure 3 illustrates the simulation savings compare to traditional full end-to-end test runs. The 

simulation result in Figure 3 with Surge also includes the time spent in FastSim, which is insignificant given that 

FastSim runs thousands of times faster than RTL simulation. The data has been abstracted to protect and not reveal 

detail about E-core’s proprietary testbench environment; however, the general trend and relative performance in the 

graph remains accurate. On average, E-core’s simulation performance increased by 40% on exercising the four core 

CPU module. The percentage of savings from Surge increases with the number of cores being simulated. This is 

expected as multicore content contains various barriers and cross-core synchronization loops that increasingly slows 

test progression as core count rises. Surge allows the testbench to jumpstart pass the bulk of those test setup 

sequences.  

The E-core validation team uses a variety of proprietary architectural test generators to stress all areas of 

the processor design. While the specific details of E-core’s test generators are outside the scope of this paper, it is 

worth noting that Surge is agnostic to the architectural instruction sequences being skipped and as result works with 

all variety of architectural test generators. Each test generator simply needs to define the boundary point where 

Surge need to trigger the migration from FastSim to RTL simulation. The boundary point can be as complex as a 

combination of architectural test sequence/state or as simple as a particular assembly jump label.  

E-core’s performance team have been running with Surge enabled for almost 2 years and have not had to 

look back. Surge is the current state-of-the-art tool to conduct E-core’s performance correlation, replacing Perf_JS. 

For scale, E-core runs 3 performance regressions per week with a rotating set of ~2700 trace snippets per regression. 

Throughout the years only minor tool bugs were discovered and quickly fixed with no disruption to pre-silicon 

validation and performance correlation work despite constant changes in E-core’s RTL and feature set. 

While most discussion in this paper has focused on simulation, Surge has proven to be easily translatable to 

emulation as well. Given the ability to preload the C6 SRAM through ordinary methods and by injecting a single 

signal to spoof the cold boot state to C6 restore the same Surge flow from pre-silicon simulation also works on 

emulation platforms. This enabled our performance correlation team to run real-world content at high-speed 

allowing us to practically compare performance and power estimates for full-duration sections of benchmarks on our 

performance timing model versus RTL. 



 

 

V.   UNDERSTANDING SURGE’S TRADEOFFS 

 

As with any jumpstart mechanism, the validator should only utilize Surge on content that make sense and 

understand the tool’s limitation. Any critical test sequence should not be skipped over with Surge. Surge relies on 

FastSim to correctly emulate the RTL behavior; however, the validator should understand that FastSim is not a cycle 

accurate CPU model. Any test content that relies on CPU counter for program ordering or any test sequence 

attempting to align a microarchitectural race condition cannot expect accurate result from Surge jumpstart. In 

general, when utilizing Surge to expedite simulation performance it is best matched with random test generators and 

test content that are microarchitecturally agnostic. 

Surge’s heavy reuse of FastSim, SMM, and C6 power state allows the tool to have a very small footprint 

and negligible maintenance cost. Aside from the two dozen lines of SVTB code utilized to inject the C6 SRAM and 

trigger C6 restore from the power management unit nothing else in Surge is tied to project’s RTL implementation. 

Of course, FastSim’s modelling needs to be accurate as well as SMM and C6 functionality needs to be healthy for 

Surge to be operational. From our experience, these dependencies have not been an issue. Both SMM and C6 are 

legacy features with robust regression suites that guard against new bugs. Meanwhile, FastSim modelling has always 

been a high priority task during the initial phase of all E-core projects. 

 

VI.   CLOSING REMARKS 

 

Surge gives validators a straightforward way to shorten CPU simulation through a robust jumpstart 

mechanism. While the saving on CPU simulation varies by test content, on average 30% ~ 40% runtime savings is 

achieved. Surge is E-core’s state-of-art tool for launching performance correlation validation on multiple projects. It 

streamlines E-core’s performance correlation tool through its support of code snippets and multicore support. By 

reusing legacy architectural features, C6 and SMI, as well as leveraging existing validation behavior models kept the 

code base simple and resilient to frequent RTL changes. As a result, throughout the years only minor tool bugs were 

discovered and quickly fixed with no disruption to performance correlation work despite constant changes in E-

core’s RTL. Surge’s low maintenance and small code base allows it to be easily deployed across the E-core projects. 
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