
Tutorial: A Holistic Approach to
RISC-V Processor Verification

Larry Lapides

Oğuzhan Turk

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

Why should we use RISC-V?

Anyone can design their own processor based on the
RISC-V ISA

Modular ISA = choice of which features to
include/exclude

Extensibility and freedom to customize at ISA and
micro-architectural levels

RISC-V enables the creation of domain-specific
differentiated processors

RISC-V is Crossing the Chasm: 2023-2024
Moving beyond early adopters, into early mainstream

• Initially only used by ‘visionaries’
like SiFive, Andes, Nvidia, Microchip

• Then systems companies wanting
domain specific processors

• Meta Infrastructure, Google, …

• IoT companies

• and early adopter semiconductor
companies e.g. Qualcomm, Nvidia
Networking (Mellanox), Silicon Labs

Source: Geoffrey Moore (1991)

RISC-V is Crossing the Chasm: 2023-2024
Moving beyond early adopters, into early mainstream

• Now…
• Every semiconductor vendor has a

RISC-V SoC project in flight

• Every hyperscaler company has a
RISC-V project at least at the test
chip phase

• Every automotive OEM and Tier 1
has a RISC-V project at least at the
test chip phase

Source: Geoffrey Moore (1991)

Expected RISC-V Market Growth

Source: RISC-V Market Report: Application Forecasts in a Heterogeneous World-Abridged, SHD Group

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

The RISC-V Verification Disconnect

RISC-V Core Developer:
• Needs to deliver high-

quality core
• Potential issues with

necessary expertise,
methodologies,
technologies, resources

RISC-V Core User:
• Expects core quality to be the

same as ARM
• 1015 verification cycles =104 RTL

simulators running 24/7!

Challenges in RISC-V Processor Verification

• Design complexity – architecture, micro-architecture, implementation
choices, custom features

• Source of processor IP (in-house, open source, vendor + custom
instructions)

• Use case: microcontroller –> application processor; closed versus open to
external software development

• Processor verification methodology, throughout the project life cycle

• Team experience (designers and verification engineers)

• Verification productivity and time to closure

• Tool selection

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

What have we learned in the last 7 years?

• A verification plan is needed, addressing three orthogonal axes of processor verification:

• Single core methodology

• Multi-core processor complexities

• Project life cycle (pre- to post-silicon)

• Different than with SoC DV, a high-quality, fully functional reference model is needed

• As with SoC DV, the full range of verification technologies is needed

• Dynamic verification

• Formal verification

• Hardware-assisted verification

RISC-V Processor Verification Process
Design verification from unit to SoC

Design Level Example Tool/Methodology

Unit Pipeline, FPU Formal + predefined assertion IP

Security Formal + predefined security assertion IP

Architecture ISA Dynamic

Formal + predefined assertion IP

Custom instructions, CSRs Custom DSP, matrix Dynamic

Formal sequential equivalence checking, register
verification, datapath validation

Processing subsystem Coherent cache, multi- or
many-processor accelerator

Dynamic, especially using hardware assisted
verification

Formal property verification for cache coherence
verification

Synopsys RISC-V Processor Verification Solutions

Verdi Verification Planning and Functional Coverage Platform

VC Formal FPV +
RISC-V ISA AIP

Functional Verification

VC Formal DPV
Verify computational correctness for RISC-

V processors

VC Formal Portfolio VCS & Verdi
Dynamic Simulation

VSO.ai
Coverage Optimization

Formal Verification Dynamic Verification

ZeBu & HAPS
HW Assisted Verification

STING
Test Generation

ImperasDV
Co-Simulation and Checking

Verification Environment

VC Formal SEQ
Verify that custom instructions do not

break the original core

ImperasFPM
RISC-V Reference Model

ImperasFC
RISC-V ISA Functional Coverage

5 Levels of RISC-V Processor DV Methodology

1) Asynchronous lockstep continuous compare

2) Synchronous step-and-compare

3) Post-simulation trace log file compare

4) Self-checking tests

5) “Hello World”, Linux boot, …
CPU

Quality

5 Levels of RISC-V Processor DV Methodology

1) Asynchronous lockstep continuous compare

2) Synchronous step-and-compare

3) Post-simulation trace log file compare

4) Self-checking tests

5) “Hello World”, Linux boot, …
CPU

Quality

Post-sim Trace Compare (entry level DV):
Pros and Cons

• Pros:
• Simple to set up and use

• Cons:
• Must run RTL simulation to the end

• Cannot debug live

• Incompatible trace formats (between RTL, ISS, …)

• Easy to skip instructions, and only compare selected few

• Difficult to verify asynchronous events (e.g. interrupts, debug requests)

• Not a comprehensive DV strategy

• Key requirement: high quality model of the RISC-V processor
• ImperasFPM is the high quality commercially supported model

• Companies/engineers often think they can “easily” build their own model and Instruction Set Simulator (ISS) or use open source as a starting point

• In our experience, building/maintaining an ISS is not nearly so easy

➢ Post-sim trace compare is widely used
➢Most effective as a complementary methodology to asynchronous continuous compare

5 Levels of RISC-V Processor DV Methodology

1) Asynchronous lockstep continuous compare

2) Synchronous step-and-compare

3) Post-simulation trace log file compare

4) Self-checking tests

5) “Hello World”, Linux boot, …
CPU

Quality

Asynchronous Lockstep Continuous Compare
Methodology (highest quality processor DV)

• RTL and reference model are run in “lock-step” in the
same simulation ​ (co-simulation)

• Asynchronous events are driven into the DUT

• Tracer informs reference model about async events

• ImperasDV handles async events, scoreboarding,
comparison, pass/fail

• Test source can be directed test suites for complex
features, architecture validation tests, instruction stream
generator or other constrained random generator

• Asynchronous events include interrupts, Debug mode,
multi-hart processors, multi-issue and Out-of-Order
pipeline, …

Asynchronous Lockstep Continuous Compare:
Pros and Cons

• Pros:
• Immediate comparison; immediate reporting of bugs

• Allows for debug introspection at point of failure – very powerful

• Does not waste execution cycles after failure

• Most comprehensive DV methodology
• Enables DV of complex features e.g. interrupts, Debug mode, privilege modes, virtual memory, multi-hart, multi-issue and OoO pipelines

• Upon instruction retirement, full internal state of the processor is compared to the reference model

• Cons:
• Users need to develop the RTL RVVI Tracer module, for communication between the DUT and reference model

• For an engineer familiar with the processor RTL, this is typically 1-2 weeks

• Key requirements: high quality model of the RISC-V processor, co-simulation verification environment
• ImperasFPM is the high quality commercially supported model

• Building the verification environment is typically a make versus buy decision
• ImperasDV provides a commercially supported, easy to use, asynchronous lockstep continuous compare processor verification environment, including functional

coverage modules

➢ Asynchronous lockstep continuous compare methodology is used by the leading process IP vendors and
companies building their own RISC-V processors

➢ ImperasDV and ImperasFPMs have been used for DV of processors in > 30 SoC tapeouts

Software Driven Functional Verification Methodology

Silicon
FPGA

Prototype

In-Circuit

Emulations

Pre-Silicon

Simulations

Design Life Cycle

Increase in CPU Frequency

SV/UVM Tests OS Based Tests

E
ff
e
c
ti
v
e
n
e
s
s
 o

f
T
e
s
ts

V
e
ri
fi
c
a
ti
o
n
 C

o
v
e
ra

g
e
 P

ro
v
id

e
d

Allow consistent execution on

all verification environments

Test stimulus once developed

can be reused easily across

the design life cycle

Failures hit on silicon can be

easily migrated to an earlier

stage for faster debug

Early enabling of software

based stimulus increases the

chances of hitting complex bugs

early

Save on duplicate efforts

spent on verification and

validation by acting as a bridge

between the two methodologies

Need For Software Driven DV Solution

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

Dynamic Verification: ImperasDV + Test Stimuli

• ImperasFPM RISC-V Processor Model: for comparison
of correct behavior; extendable for custom instructions

• ImperasDV: provides configuration, comparison and
checking, pipeline synchronization and scoreboarding

• ImperasFC: deploys SystemVerilog functional coverage
code for each ISA extension

• riscvISATESTS/ImperasTS: provides directed test suites

• STING: constrained random instruction stream
generator

ImperasTS
riscvISATESTS

STING

ImperasFPMs (Fast Processor Models) for RISC-V

• Base Model implements RISC-V specification in full

• Fully user configurable to select ISA extensions and
versions

• Pre-defined configurations and custom instructions for
processor IP vendors

• User extensions built in a separate library do not perturb
the verified Base Model, help reduce maintenance

• Because every ImperasFPM uses the RISC-V Base Model,
and including users of both commercial and free tools,
over 150 companies, organizations and universities have
used the ImperasFPM

ImperasFPM

User
Extension:

custom
instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

ImperasFPMs (Fast Processor Models) for RISC-V

• Model architecture and features
• Base Model implements RISC-V specification in full

• Fully user configurable to select ISA extensions and versions

• Pre-defined configurations and custom instructions for processor IP vendors

• User extensions built in a separate library do not perturb the verified Base Model, help reduce maintenance

• ImperasFPM model testing and validation
• ImperasFPMs are built using Test Driven Development methodology

• Synopsys uses Continuous Integration flow – ~20,000 tests run each time engineer checks in code

• Code coverage metrics and mutation testing tools also used internally

• Because every ImperasFPM uses the RISC-V Base Model, and including users of both commercial and free tools, over 150 companies, organizations and universities
have used the ImperasFPM

• Models of processor IP vendor cores are validated together with the vendor

ImperasFPM

User
Extension:

custom
instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

RISC-V Base Model is used by 150+ Companies and Organizations

ImperasFPM Architecture

• OVP APIs support …
• Model functionality

• Processor analysis tools

• APIs are supported by a Just-In-Time (JIT) binary
translation simulator engine

• Translates RISC-V instructions to x86 on host PC

• Adds in analysis “instrumentation” to the simulator, so analysis is
non-intrusive

• APIs are publicly available:
https://github.com/OVPworld/information

• The OVP APIs have been used to develop models of 18 different
instruction set architectures (ISAs), including 3 proprietary ISAs

• Matured by supporting ISAs such as Arm and MIPS before being
used for RISC-V

ImperasFPM

User
Extension:

custom
instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

OVP APIs

Just-In-Time Binary Translation Simulator Engine

https://github.com/OVPworld/information

Models Drive Customization

• In the RISC-V world, custom instructions are added to
optimize a specific application or set of applications
within a domain

• “Domain-Specific Processors”

• Models let you explore custom instructions quickly
• Much faster to develop/analyze custom instructions in the model

than by writing RTL

• Better profiling data and other analytical tools

• Better software debug capabilities

• Methodology
• Start by characterizing the application to be optimized

• Then add custom instructions, evaluate and iterate

Algorithm

Simulate

w/ RISC-V

Model

Compile

Analyze
Add Custom

Instructions

Hand-Code

ASM

User
Extension:

custom
instructions

& CSRs

RISC-V
Base Model

Model Config
250+ params

ImperasFPM
RISC-V Reference

Model

memTest

UVM env (optional)

Simulation
control

R
V

V
I T

R
A

C
ER

RISC-V Core
RTL

(DUT)

ImperasDV

SystemVerilog C

ImperasFPM
RISC-V

Reference Model

Configuration

State
comparison

Pipeline
synchronization

Scoreboard

Pass/Fail
Determination

trace2cov

trace2api

trace2log
R

V
V

I-
TR

A
C

E

R
V

V
I-

A
P

I

ImperasFC
functional
coverage

SystemVerilog top level
Testbench

ImperasDV RISC-V Processor Verification Environment

RISC-V Processor Verification using RVVI

• RVVI = RISC-V Verification Interface
• https://github.com/riscv-verification/RVVI

• Open standard: result of
collaboration between industry and
open-source

• Standardizes communication
between testbench and RISC-V VIP

• RVVI-TRACE: interface between tracer
and testbench

• RVVI-API: interface between RISC-V
verification component and reference
model

Testbench

Tr
ac

er

Processor RTL
and memory R

V
V

I-
TR

A
C

E

RVVI-API

ImperasDV

Imperas RISC-V
Reference Model

https://github.com/riscv-verification/RVVI

RVVI-TRACE Enables Verification of DUT
internal state
• Defines information to be

extracted by tracer
• e.g. PC, CSRs, GPRs, instr. binary

• SystemVerilog interface

• Includes functions to handle
asynchronous events

• e.g. interrupts, debug requests

Tr
ac

er

R
V

V
I-

TR
A

C
E

valid
pc_rdata

net_push()

. . .

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

Processor RTL
and memory

RVVI-API

ImperasDV

Imperas RISC-V
Reference Model

csr[..]

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

ImperasFC: SystemVerilog Functional Coverage for
RISC-V

• Functional coverage code
generation

• Manual creation would be tedious,
time consuming and error prone

• >100K lines of code

• Synopsys tools can automatically
generate functional coverage code for
custom instructions

• Functional coverage is the key
verification metric

ImperasFC
functional
coverage

Machine-
readable RISC-V

ISA
specification

SystemVerilog
coverage

code generator

https://github.com/riscv-verification/riscvISACOV/tree/v20240124/documentation for list of covered extensions

https://github.com/riscv-verification/riscvISACOV/tree/v20240124/documentation

Integrating ImperasDV with Verdi

• Auto-generated documentation in markdown and csv
formats for inclusion in Verification Plans

• Functional coverage data is reported in verification
tools such as Verdi

riscvISATESTS & ImperasTS
Test Stimulus

riscvISATESTS

• Directed test suites for architectural validation ("compliance")

• Provided free to licensed users

ImperasTS

• Directed test suites for complex, configurable extensions (Vector, MMU, PMP)

• Test suite generated to match customer’s core configuration

ImperasTS

• MMU
• Supports Sv32, Sv39, and Sv48 virtual memory systems
• Separate tests for User and Supervisor modes
• Tests are generated for a specific physical memory location, will run on a bare metal

platform
• Tests are all self-checking

• PMP, EPMP
• Supports 32 bit and 64 bit PMP
• Tests are generated to target specific pmpcfg/pmpaddr regions
• Allows read-only fields and custom reset values in CSRs

• Vector
• Configured for specific core setup
• 7 separate suites

Vector tests
7 test suites

Test Suites Test Files Ins. Types Unique Ins. Total Ins. Basic Coverage

Vb 324 2 48 412,064 89.79%

Vf 698 17 91 575,164 86.86%

Vi 1402 12 137 1,112,780 93.54%

Vm 180 2 15 160,680 99.92%

Vp 184 4 21 141,228 91.90%

Vr 146 2 16 110,676 91.67%

Vx 348 6 32 277,504 96.70%

Verify RISC-V ISA, custom
extensions,

multi-hart, memory
coherence, concurrency

Generate
constrained random,

directed and graph-based
tests

Test
on multiple platforms

including silicon devices

Target Platforms

HW emulation

RTL simulation

FPGA prototype

Silicon

STING RISC-V design

STING Generates Self-Checking Tests for
RISC-V Processors and Systems

© 2024 Synopsys, Inc. 37

Software-Driven Verification

• Supporting verification throughout the design life cycle, pre- to post-
silicon

• Portable across simulation, emulation, prototyping and silicon

• Supports higher levels of processor complexity and integration,
including multi-hart, coherent cache, processing subsystem

• Full support for the RISC-V ISA specification

• Extensible to custom instructions and peripheral devices

• Addressing single CPU and complex many core SoC designs

• Self-checking test generation (use standalone) or instruction stream
generation (use with ImperasDV) for RISC-V

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Micro-Kernel

Library

Device Drivers

STING

STING.elf

H
W

 e
m

u
la

ti
o

n

R
T

L
 s

im
u

la
ti
o

n

F
P

G
A

 p
ro

to
ty

p
e

S
ili

c
o

n

Accelerating RISC-V Processor Verification Using
Hardware Assisted Verification (HAV) Tools
ImperasDV + HAPS (FPGA prototyping)

✓ Execution speed
• Faster than simulation

✓ Large designs
• Impractical to simulate

✓ Highest quality verification
• ImperasDV compare technology

✓ Verification metrics
• ImperasFC functional coverage

RISC-V design running on
HAPS

ImperasDV

RVVI-TRACE data sent to
ImperasDV

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

Synopsys VC Formal – Leading Formal Innovations
Unified Compile with VCS

Industry’s Fastest Growing Formal Solution!

Deliver highest performance
Innovative formal engines and ML-based orchestrations
find more bugs and achieve more proofs on larger designs

Enable formal signoff
Exhaustive formal analysis catches corner-case bugs and
enables formal signoff for control and datapath blocks

Ease Formal adoption
Easy-to-use formal apps, native integration with VCS and Verdi,
and Formal Consulting Services reduce formal adoption effort

Unified Formal Debugger with Verdi

Rich Set of Assertion IPs (Including RISC-V AIP)

ML-Enabled Formal Engines and Orchestrations

Synopsys VC Formal: Innovative Formal Verification
Solutions
VC Formal Apps Adoption Effort – Formal Expertise Not Always Required

Verification Complexity: In terms of exhaustive computation analysis required to verify the DUT

Adoption Effort: In terms of formal expertise and testbench required to apply the specific APP

Low Medium High

Synopsys VC Formal: Innovative Formal Verification
Solutions
VC Formal Apps Can Be Used Throughout the SoC Flow

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC

RISC-V Core Formal Verification Overview
• FPV (Model Checking):

• Prefetch Buffer

• LSU – Load/Store unit

• Pipeline

• RISC-V AIP

• DPV (Equivalence Checking):
• ALU/MULT/Dotp

• Decoder

• SEQ (Equivalence Checking):
• Clock gating verification in every functional unit

• Designs comparison in presence of new features/timing changes

• FRV (Formal Register Verification)
• Control and Status Registers (Zicsr)

• FSV (Formal Security Verification)
• Secure/Non-secure data propagation

• RV32I base ISA, for example:

‒ LOAD - LSU

‒ STORE - LSU

‒ BRANCH/JUMP/LUI/AUIPC - PFU

‒ OP-IMM - EXU

‒ OP - EXU

‒ Environment call/break point

• Zicsr extension

‒ CSR Write

‒ CSR Read

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-

GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

F P V B E N E F I T S F P V F E AT U R E S

• Verify functional correctness

of design blocks through

exhaustive formal analysis

• Find corner-case bugs early

without simulation and

reduce time to verification

closure

• Enable formal signoff

methodology

• State-of-the-art ML-powered

formal analysis engines and

orchestration offer best

performance and capacity

• Integrated Verdi GUI offers

the most familiar debugging

• Deep bug hunting and

advanced proof techniques

Proof Assist, Proof Architect

VC Formal FPV

DUT
Properties

Constraints

VCS Compilation Frontend

Smart Engine Orchestration

Regression Mode Acceleration

Verdi Integrated Debugger

VC Formal FPV: Formal Property Verification

D P V B E N E F I T S

• Exhaustively verify datapath

design refinements

• Prove consistency of

independently developed

reference & implementation

models

• Achieve datapath signoff

without any testbench

D P V F E AT U R E S

• Integrated mature HECTOR

technology

• Supports ADD, SUB, MULT,

DIV, SQRT operators

• Applicable to CPU, GPU,

DSP, AI/ML (CNN) and other

data processing designs

Impl. Model

C/C++/RTL

VC Formal DPV
Transactional Equivalence Checking

Ref. Model

C/C++/RTL

Debug

Counter-Example
Datapath

Signoff

Assume

Equal

Inputs

Compare

Outputs

VC Formal DPV: Datapath Validation

S E Q B E N E F I T S S E Q F E AT U R E S

• Exhaustively verify and

signoff the design

optimizations without any

testbench

• Push the frontier of

performance, power, and

area (PPA) optimizations

• Save weeks/months

simulation regression time

• Supports clock gating,

retiming, microarchitecture

optimizations

• Automatically creates

equivalence mapping

between specification and

implementation RTL

• State-of-the-art ML powered

formal engine for best

performance

Implementation

RTL

VC Formal SEQ
Check Outputs Cycle-Level Equivalence

Specification

RTL

Debug

Counter-Example
Results Reporting

VC Formal SEQ: Sequential Equivalence Checking

VC Formal FRV: Formal Register Verification

F R V B E N E F I T S F R V F E AT U R E S

• Exhaustively verify the

consistency of register

model against specification

• Find corner-case bugs

earlier in the design cycle,

shorten debug time

• Save time and effort

compared with manual

directed simulation tests

• Accept IP-XACT, CSV,

RALF spec formats

• Verify that Control Status

Registers are correctly

implemented using standard

or proprietary bus protocols

• Applicable at both the block

and SoC level

DUT
Register Blocks

Register Spec
RALF/CSV/XML

AIP
Protocol Constraints

VC Formal FRV

Generate checkers for each register field

Verify register read/write

unsecure

source

unsecure

secure

secure

destination

source

destination

OK
Integrity

Violation

Data

LeakOK

F S V B E N E F I T S

• Ensure data security

objectives are met through

exhaustive formal analysis

• Ensure secure data cannot

be read illegally or be

written from an unsecure

source

• Detect security issues that

are hard to find through

other techniques

F S V F E AT U R E S

• Flexible property creation &

management

• ML powered engines for

fast performance

• Data propagation analysis

and debug with temporal

flow view

• Verification of multiple

scenarios in one session

VC Formal FSV: Formal Security Verification

Agenda

• Why is RISC-V being broadly adopted?

• Challenge: the RISC-V verification disconnect

• A RISC-V processor verification solution

• Dynamic verification

• Formal verification

• Summary

How to close the RISC-V Verification Disconnect?

• Need verification plan including metrics

• Need to consider multiple, complementary methodologies and technologies

– Dynamic and formal simulation

– Processor only or higher level of integration

– RTL through SoC

• High quality RISC-V reference model

– Support the full RISC-V specification

– Support custom instructions

• Use silicon-proven processor verification tools and models

How to close the RISC-V Verification
Disconnect?
• Need verification plan including metrics

• Need to consider multiple, complementary methodologies and technologies

• Dynamic and formal simulation

• Processor only or higher level of integration

• RTL through SoC

• High quality RISC-V reference model

• Support the full RISC-V specification

• Support custom instructions

• Use silicon-proven processor verification tools and models

Thank you!

Questions?

	Folie 1: Tutorial: A Holistic Approach to RISC-V Processor Verification
	Folie 2: Agenda
	Folie 3: Agenda
	Folie 4: Why should we use RISC-V?
	Folie 5: RISC-V is Crossing the Chasm: 2023-2024
	Folie 6: RISC-V is Crossing the Chasm: 2023-2024
	Folie 7: Expected RISC-V Market Growth
	Folie 8: Agenda
	Folie 9: The RISC-V Verification Disconnect
	Folie 10: Challenges in RISC-V Processor Verification
	Folie 11: Agenda
	Folie 12: What have we learned in the last 7 years?
	Folie 13: RISC-V Processor Verification Process
	Folie 14: Synopsys RISC-V Processor Verification Solutions
	Folie 15: 5 Levels of RISC-V Processor DV Methodology
	Folie 16: 5 Levels of RISC-V Processor DV Methodology
	Folie 17: Post-sim Trace Compare (entry level DV): Pros and Cons
	Folie 18: 5 Levels of RISC-V Processor DV Methodology
	Folie 19: Asynchronous Lockstep Continuous Compare Methodology (highest quality processor DV)
	Folie 20: Asynchronous Lockstep Continuous Compare: Pros and Cons
	Folie 21: Need For Software Driven DV Solution
	Folie 22: Agenda
	Folie 23: Dynamic Verification: ImperasDV + Test Stimuli
	Folie 24: ImperasFPMs (Fast Processor Models) for RISC-V
	Folie 25: ImperasFPMs (Fast Processor Models) for RISC-V
	Folie 26: ImperasFPM Architecture
	Folie 27: Models Drive Customization
	Folie 28: ImperasDV RISC-V Processor Verification Environment
	Folie 29: RISC-V Processor Verification using RVVI
	Folie 30: RVVI-TRACE Enables Verification of DUT internal state
	Folie 31: ImperasFC: SystemVerilog Functional Coverage for RISC-V
	Folie 32: Integrating ImperasDV with Verdi
	Folie 33: riscvISATESTS & ImperasTS
	Folie 34: ImperasTS
	Folie 35: Vector tests
	Folie 36: STING Generates Self-Checking Tests for RISC-V Processors and Systems
	Folie 37: Software-Driven Verification
	Folie 38: Accelerating RISC-V Processor Verification Using Hardware Assisted Verification (HAV) Tools
	Folie 39: Agenda
	Folie 40: Synopsys VC Formal – Leading Formal Innovations
	Folie 41: Synopsys VC Formal: Innovative Formal Verification Solutions
	Folie 42: Synopsys VC Formal: Innovative Formal Verification Solutions
	Folie 43: RISC-V Core Formal Verification Overview
	Folie 44: VC Formal FPV: Formal Property Verification
	Folie 45
	Folie 46
	Folie 47: VC Formal FRV: Formal Register Verification
	Folie 48
	Folie 49: Agenda
	Folie 50
	Folie 51: How to close the RISC-V Verification Disconnect?
	Folie 52

