
A Generic Functional Safety Vector UVC
Siril Roy, Lead Design Engineer

Kilaru Vamsikrishna, Design Engineering Architect

Raghav Sharma, Design Engineer 1



FuSa RTL Design & Verification Flow

1. Requirements & Design

Define system-level safety 
requirements.

Develop RTL with safety points and 
functional design.

2. Safety Integration & Analysis

Insert safety mechanisms into RTL.

Perform safety analysis to identify fault 
scenarios.

Plan and execute fault campaigns.

3. Verification & Metrics

Conduct functional verification before 
and after safety mechanism insertion.

Report final safety metrics and validate 
ASIL compliance.

Validate FMEDA and safety 
requirements.

4. Exploration & Automation

Use exploration to guide architectural 
enhancements.

Systematically achieve safety goals 
through iterative refinement.

Automate flow for efficiency and 
repeatability.



Subsystem Design with Fault Insertion & 
Logging

RTL subsystem integrates multiple functional 
modules.

Aggregation logic consolidates fault signals and 
safety responses.

Dedicated fault insertion and error logging 
modules are included.

Each module is designed with safety 
instrumentation.

Supports scalable fault injection and 
traceability.

Sub System Design 

Fault insertion and Logging 
Block

Block 1 
Design

Block 2 
Design

Block N 
Design

In
te

rr
u

p
ts

Fault Injection and Logging Regs



Block DUT With Fault Checkers and 
Generators
• Interface & IO Design

o The RTL module includes multiple 
interfaces (Interface 1 to N) with 
defined inputs and outputs.

o Dedicated interfaces for injecting 
faults and capturing error responses.

• Example Safety Mechanisms
o Safety mechanisms are implemented 

to detect and mitigate faults in data 
paths and control logic, ensuring 
robust functional safety compliance 
within the module. 

Interface N 
Inputs

Example Block Design
Interface 1 
Inputs

Interface 2 
Inputs

Interface 1 
Outputs

Interface 2 
Outputs

Fault Injection 
Interface

Fault Reporting 
Interface

Interface 
Signal
 1 to N 
Parity 

Generator

Interface 
Signal
 1 to N 
Parity 

Checker

Register 
Duplicate 
checkers

Timeout 
checkers

ECC 
Generator
/Checker

CRC 
Generato

r/ 
Checkers

FSM 
Onehot 
checkers

Other 
Integrity 
checkers

Interface N 
Outputs

Functionality RTL Design Modules



RTL snippet showing parity check logic with 
fault injection support
• Compares input parity with 

calculated parity.

• Flags parity errors via a 
dedicated output.

• This module can be reused as it 
required only width parameter.

• Supports fault injection into data or parity logic for safety validation.

• Validates safety instrumentation and detects transient. 



Example Block DUT Design with Safety 
Instrumentation
• This block design integrates multiple 

safety mechanisms and supports 
fault injection and error logging for 
subsystem-level validation.

• Integrates multiple safety 
mechanisms

• Supports fault injection and 
detection.

• Interfaces support traceability and 
fault response capture



Problem statement
• Validating Safety Mechanisms

o Each module must have safety logic that operates correctly and independently.
o Reusing safety RTL across modules makes isolation and correctness harder to verify.

• Scalable Testbench Design
o Creating a testbench that supports multiple DUTs with shared safety RTL is complex.
o It demands significant resources and careful architecture.

• Testcase Overhead
o Every safety mechanism needs a dedicated testcase.
o This leads to increased effort, longer regression cycles, and slower verification 

closure.

• Fault Injection with Functional Traffic
o Injecting faults while running functional traffic adds layers of complexity.
o Debugging becomes more time-consuming and error-prone.

• Cross-Module Fault Propagation
o Faults in one module can affect shared safety RTL and propagate to others.
o Verifying these interactions is non-trivial and requires robust coverage.



FuSa Vector UVC Env
• Includes standard UVM elements: 

o Agent, Driver, Monitor, and Sequencer, enabling 
modular and reusable verification.

• Built-in Scoreboard and Coverage Collectors
o Ensures automated checking and coverage 

tracking for fault injection and safety responses.

• Reusable Transaction Item, Interfaces and 
Sequences.
o Promotes consistency and reuse across different 

DUTs and testbenches.

• Configurable UVC 
o Designed to connect with parameterized 

interfaces and defined control logic, allowing 
flexibility across varying DUT configurations



FuSa Vector UVC – Interface and Trans item

• Parametrized interface and transaction item for flexibility.

• Designed for modularity and scalability across different DUTs.

• Promotes consistent safety verification methodology.



FuSa Vector UVC - Monitor

• The monitor captures 
interface signals, including 
injection and reporting 
vectors.

• Monitor creates and writes 
transaction items to the 
analysis port whenever there 
is a bit-level change in any of 
the interface signals.



FuSa Vector UVC – Structs and Params

• Define structs and parameters to 
support fault injection and reporting in 
the design.

• Use separate vectors for injection and 
reporting to improve scalability of 
scoreboarding, coverage, and analysis.

• Apply these parameters consistently 
across all UVC components to ensure 
modularity and reuse.

• These definitions can also be reused in 
the top-level testbench for passive 
monitoring.



FuSa Vector UVC – TB Arch

• Parallel functional and 
fault simulation support.

• Monitored fault 
transactions shared 
across the testbench.

• Fault prediction support 
based on functional 
verification.

• Reusability of this passive 
logic in Top level TB.



FuSa Vector UVC – TB Top

• Block DUT instantiation and 
connection to the typedef structs.

• Reducing the complexity of width-
based connection by using SV 
structs.

• Interface instantiation of FuSa Vector 
UVC interface and connecting it to 
the design through structs.



FuSa Vector UVC – Fault Generation

• An example UVM sequence for fault 
generation.

• Constraints are created based on the test 
intention.

• Parallel fault injection to multiple safety 
points.

• Can be wait for the fault reporting based 
on the fault monitored by the UVC.



FuSa Vector UVC – Fault Scoreboarding

• Fault Scoreboarding after Internal and external fault injection.

• Default checks present in scoreboards to flag unexpected fault reporting.



Results

• Reused across 3 Block level testbenches with different parameter 
configurations.
• Two-man week timeframe for this UVC integration into UCIe Adapter Block TB.

• Early bug identification and verification closure.

• Passive monitoring and checking enabled in Top TB by reusing this 
module TB Envs.

• Reduced TB complexity significantly with parallel traffic and fault injection 
support.



Results

• RTL module with IO’s and 
Safety points

• Stress fault injection to the 
safety instances to identify 
corner bugs.

• 100% FC and CC achieved in 
short time.



Results

• Example monthly bug rate. 90% bugs identified and closed in 3 months. 

• Filtered FSM CC for a DUT safety instances. 



Questions


	Slide 1: A Generic Functional Safety Vector UVC
	Slide 2: FuSa RTL Design & Verification Flow
	Slide 3: Subsystem Design with Fault Insertion & Logging
	Slide 4: Block DUT With Fault Checkers and Generators
	Slide 5: RTL snippet showing parity check logic with fault injection support
	Slide 6: Example Block DUT Design with Safety Instrumentation
	Slide 7: Problem statement
	Slide 8: FuSa Vector UVC Env
	Slide 9: FuSa Vector UVC – Interface and Trans item
	Slide 10: FuSa Vector UVC - Monitor
	Slide 11: FuSa Vector UVC – Structs and Params
	Slide 12: FuSa Vector UVC – TB Arch
	Slide 13: FuSa Vector UVC – TB Top
	Slide 14: FuSa Vector UVC – Fault Generation
	Slide 15: FuSa Vector UVC – Fault Scoreboarding
	Slide 16: Results
	Slide 17: Results
	Slide 18: Results
	Slide 19: Questions

