(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

A Generic Functional Safety Vector UVC
Siril Roy, Lead Design Engineer

Kilaru Vamsikrishna, Design Engineering Architect
Raghav Sharma, Design Engineer 1

cadence

FuSa RTL Design & Verification Flow

Functional
Verification

Exploration to systematically achieve safety goals

Automated

= =

System Functional Safety Safety \f unfct iotr_1al Final Metric
Requirements Design Analysis Insertion g;'téfasﬁ n Reporting
Safety Requirements and FMEDA Exploration guides
Validated enhancement
I Q r
I o o 6 o J
1. Requirements & Design 2. Safety Integration & Analysis 3. Verification & Metrics 4. Exploration & Automation
Define system-level safety Insert safety mechanisms into RTL. Conduct functional verification before Use exploration to guide architectural
requirements. Perform safety analysis to identify fault and after safety mechanism insertion. enhancements.
Develop RTL with safety points and scenarios. Report final safety metrics and validate Systematically achieve safety goals
functional design. Plan and execute fault campaigns ASIL compliance. through iterative refinement.
Validate FMEDA and safety Automate flow for efficiency and
requirements. repeatability.

(2025

DESIGN AND VERIEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Subsystem Design with Fault Insertion &
Logging

Sub System Design

RTL subsystem integrates multiple functional

ﬁ modules.
Fault insertion and Logging Aggregation logic consolidates fault signals and
g Block safety responses.

Fault Injection and Logging Regs

Dedicated fault insertion and error logging
modules are included.

Block 1 Block 2 Block N Each module is designed with safety
Design Design Design instrumentation.

Supports scalable fault injection and
traceability.

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITI ON

Block DUT With Fault Checkers and
Generators

* Interface & 10 Design P interface 1
Interface 1 Outputs
o The RTL module includes multiple Inputs - ‘
. . Functionality RTL Design Modules
interfaces (Interface 1 to N) with
. . Interface 2 Interface 2
defined inputs and outputs. Inputs - Interface ‘Outputs
. Signal Regist . FSM
o Dedicated interfaces for injecting) B e el B
. . checkers
faults and capturing error responses. Ul g W T 'Onzi;fjtcse'“
Interface N
 Example Safety Mechanisms inputs
Intgrface e
o Safety mechanisms are implemented o ¢ | Generato || Other
. . oN Generator / Integrity
to detect and mitigate faults in data - Parity || /Checker || . " || checkers
. . Check
paths and control logic, ensuring = . |
. . Fault Injection Fault Reporting
robust functional safety compliance interface Interface
within the module.
/ / 2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

RTL snippet showing parity check logic with
fault injection support

° CO m pa res i n p ut p a rity Wit h mot(iule pirity_checker‘_example #(pag:zjl)::;,DATAPATH_WD = 1024)

inpu
input [DATAPATH WD-1:0] data_in,
input [(DATAPATH WD/2)-1:0] parity_in,

L]
calculated parity. it [ONTAPATI D101 ot dn el i,
input [(DATAPATH_WD/2)-1:6] parity_in_fault_inj,
output parity_err)

* Flags parity errors via a vire [ORTAPRT 1D/5)-1:0] cale_pariey

// Parity Generator for comparision

dedicated output. sy, anerator o par(ode.par

.data(data_in~data_in_fault_inj),
.parity out(calc_parity));

* This module can be reused as it | / ewor oup

parity err = |(calc_parity*(parity_in”parity_in_fault_inj));

required only width parameter. | s

Figure 1: Parity Checker Verilog RTL Module

e Supports fault injection into data or parity logic for safety validation.

* Validates safety instrumentation and detects transient.

Example Block DUT Design with Safety
Instrumentation

module sample_rtl

#(parameter DATAPATH_WD = 1824
sparameter ADDR_WD = 122)
(dnput clk
» This block design integrates multiple | & ey 5
IS DIOCK desIgn INntegrates MUILIPIE | e pomien oo s
. sinput [(ADDR_WD/Z)-1:0] addr_ingress_par
Safety m ech a N |S mS a N d Su p po rts input [(A0DR1D/E)-1:0] addr_ingress par_fault_inj
. R . . j;u’tgzt [ADDR_1D-1:0] :dd::;;i::s_ermr__of
fault injection and error logging for i e U
. . e ok iy i
El —_ — —_
subsystem-level validation. B mm e ST

sinput [(DATAPATH_WD/2)-1:2] data_ingress_par
sinput [(DATAPATH_WD/2)-1:0] data_ingress_par_fault_inj

* Integrates multiple safety -

sinput [DATAPATH_WD-1:2] data_egress_fault_inj
soutput [(DATAPATH_WD/2)-1:0] data_egress_par

m e C h a n i S m S sinput [(DATAPATH_I.-.ID!S)—l:c} data_egress_par_fault_inj

soutput data_egress_error_out

/f-- Other I/0s for the functionality

e Supports fault injection and i
d etectio n ° // Fault instance : Parity Chekers instance for ingress address

parity_checker_example #(.DATAPATH_WD{DATAPATH WD)} checker_addr_ingress
(-.odd_par (1°b1)
y.data_in (addr_ingress)

* Interfaces support traceability and R
fault response capture

s-parity_err (addr_ingress_error_out));

// Similar connections for other signals

parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_addr_egress(//*port connections®//);
parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_data_ingress(//*port connections®//);
parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_data_engress(//*port connections®//);
endmodule

Figure 4: DUT with some fanlt instances

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Problem statement

Validating Safety Mechanisms

o Each module must have safety logic that operates correctly and independently.

o Reusing safety RTL across modules makes isolation and correctness harder to verify.

Scalable Testbench Design

o Creating a testbench that supports multiple DUTs with shared safety RTL is complex.

o It demands significant resources and careful architecture.

Testcase Overhead
o Every safety mechanism needs a dedicated testcase.

o Tlhis leads to increased effort, longer regression cycles, and slower verification
closure.

Fault Injection with Functional Traffic
o Injecting faults while running functional traffic adds layers of complexity.
o Debugging becomes more time-consuming and error-prone.

Cross-Module Fault Propagation
o Faults in one module can affect shared safety RTL and propagate to others.
o Verifying these interactions is non-trivial and requires robust coverage.

Sub System DUT

9
8
g
2
g
£

Fault insertion and Logging

Block

|

| Fault Injection and Logging Regs |
| k

Block 1
Design

Block 2
Design

Block N
Design

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

FuSa Vector UVC Env

* Includes standard UVM elements:
o Agent, Driver, Monitor, and Sequencer, enabling
@ FuSa Log Vector Prediction Logic Epedtel 100 O mOdUIar and reusable VerlflcatIOn.
* Built-in Scoreboard and Coverage Collectors
— . , o Ensures automated checking and coverage
SRR _)C Fusa Scoreboard —— tracking for fault injection and safety responses.
— R * Reusable Transaction Item, Interfaces and
Sequence Sequences.
rary Config Object FuSa Vector UVC Agent . d d i ffe re nt
—— Fusa Vector o Promotes consistency and reuse across
o N ki DUTs and testbenches.
S— e | ¢ Configurable UVC
Parametr Deines, somor | el o B o Designed to connect with parameterized
e g AL0G.PAra L0 P interfaces and defined control |O%_IC, allowing
flexibility across varying DUT configurations

(2025

DESIGN AND VERIFEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

FuSa Vector UVC — Interface and Trans item

* Parametrized interface and transaction item for flexibility.
* Designed for modularity and scalability across different DUTSs.
* Promotes consistent safety verification methodology.

interface fusa vector uvc if (input bit clk, input bit rst n); // Parameters are user defined
class fusa vector_uvc_seq item #(int INJ_VECTOR_SIZE = 100, int LOG_VWECTOR_SIZE = 120) extends
logic [FUSA_VECTOR_UVC_FAULT_INJ_VEC WD-1 : @] fault_inj_wvector; uvm_sequence_item;
logic [FUSA VECTOR UVC FAULT LOG VEC WD-1 : @] fault log vector;
f/ Variable : Vector for Fault Injection,
// Monitor clocking block rand logic [INI_VECTOR_SIZE-1:2] fault_inj_array;
clocking monitor_cb @(posedge clk);
input fault inj vector; // Variable : Vector for Fault Reporting
input fault_log_wvector; rand logic [LOG_VECTOR_SIZE-1:2] fault_log_array;
endclocking
function new (string name = "fusa_vector_uvc_seq item”);
// Clocking block for driver super.new(names);
clocking driver cb @(posedge clk); endfunction
output fault_inj_vector;
endclocking // producer cb // Tasks and functions to be performed over transcation
endinterface endclass
Figure 3: FuSa Vector UVC Interface with fault signals Figure 3: FuSa Vector UVC Transaction item|

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

FuSa Vector UVC - Monitor

* The monitor captures pom——

// Create a new monitor object

i nte rfa Ce Sig n a | S’ i n C | u d i ng monitor_trans = fusa_vector_uvc_seq_item::type_id::create("monitor _trans", this);

f// Indicate the start of a monitor transaction

i nj ectio n a n d re po rti ng void' (begin_ tr{monitor_trans));

menitor trans.fault inj array = vif.moniter cb.fault inj wvector;
Ve Ct O r‘S menitor trans.fault log array = vif.moniter cb.fault log wvector;
L}

// Indicate the end of a monitor transaction & trigger callback
void' (end_tr{monitor_trans));

° IVI O n ito r Creates a n d Writes monitor_ap.write(moniter_trans);

f// Wait uwntil a transaction has started.

transaction items to the e Eh manitor,_cb)y

. end while ((mc.:rni.'i:r::ur'_tr‘an5.'Faul‘t_inj_ar‘r‘a;.r ===.vi'F.mc.:unitor‘_cb.'Fault_inj_vectu:l-r‘) &8
a n a |yS I S po rt W h e n eve r- t h e re o (monitor_trans.feault_leg_array === vif.monitor_cb.fault_log wector));
|S 3 b|t' I evel Ch 3 nge | N a ny Of Figure 6: FuSa Vector UVC Monitor Sampling logic

the interface signals.

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

FuSa Vector UVC — Structs and Params

* Define structs and parameters to

typedef struct packed {

support fault injection and reporting in | e poow-oo) © s tngress_fante ing

3
. logic [(ADDR_WD/2)-1:0] addr_ingress_par_ fault _inj ;
t h e d e S I g n logic [ADDR _WD-1:2] addr_egress_fault inj
° logic [(ADDR_WD/2)-1:2] addr_egress_par_fault_inj

. . . log::u: [DATAPATH_ND—]EZ]) data_::mgr'ess_fau]t_inj o3

* Use separate vectors for injection and logic [DATAPATH 0-1:1] | detamegrecs Pt ing ~)

reporting to improve scalability of } fomne Ly TD/E)71:0] data_sgress_par_faulting
scoreboarding, coverage, and analysis. | /- fut o packed struce

typedef struct packed {

* Apply these parameters consistently

across all UVC components to ensure lomie
modularity and reuse.
ff-- 2 addr signals, 2 addr_par signals, 2 data signals, 2 data_par signals

* These definitions can also be reused in | e e e - ey = 2 e
the top-level testbench for passive et gt
monitoring. P VECTOR_UVC_FAULT_LOG VEC KD = 4

Figure 8: FuSa Vector UVC related Structures and Parameters

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFEREN CE AND EXHIBITION

FuSa Vector UVC — TB Arch

 Parallel functional and
fault simulation support.

Virtual Datz tl::rsamuns
sequences scoreboarding
) v l

¢ Monitored faUIt H‘h“uh Data integrity UVC Wrappers

transactions shared S | rctemiuvcy |
across the testbench. T | =

e Fault prediction support | s s ouT
based on functional coverage | B
verification.

Other TB Control Fault

* Reusability of this passive componans” | scorboara (*
Iogic in Top IeVGI TB. | - ————————p Fault Reporting vector

-------------- » Fault Reporting vector through p_sequencer

——— Fault Injecting vector

Figure 7. Testbench architecture diagram

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

FuSa Vector UVC —TB Top

module fusa_top_th_example()

/f--- Fusa WC Interface handle ---
fusa_wector_uve_if wwc_if (intf_wrapper.clk, intf_wrapper.rst);

//--- Structure with Fault Injection Information ---
fault_inj_t fault_inj;

L] L] L
* Block DUT instantiation and
fault_log_t fault_log;
//--- Connections between FuSa Vector and UVC interface ---

connection to the typedef structs. S st ©

//--- Controller Interface ---
th_intf_wrapper intf_wrapper();

* Reducing the complexity of width-

sample_rtl #(.DATAPATH_WD(1224)) DUT

° ° (-clk (intf_wrapper.clk)
based connection by using SV
y g »-addr_ingress (intf_wrapper.addr_ingress)
y.addr_ingress_fault_inj (fault_inj.addr_ingress_fault_inj)
»-addr_ingress_par (intf_wrapper.addr_ingress_par)
St r u CtS y-addr_ingress_par_fault_inj (fault_inj.addr_ingress_par_fault_inj)
[] y.addr_ingress_error_out (fault_log.addr_ingress_error_out)
»-addr_egress (intf_wrapper.addr_egress)
y.addr_egress_fault_inj (fault_inj.addr_egress_fault_inj)
. . ° »-addr_egress_par (intf_wrapper.addr_egress_par)

[] I n te rfa Ce I n Sta n t I at I O n Of F u Sa Ve Cto r y.addr_egress_par_fault_inj (fault_inj.addr_egress_par_fault_inj)
y.addr_egress_error_out (fault_log.addr_egress_error_out)
y-data_ingress (intf_wrapper.data_ingress)

. ° ° y.data_ingress_fault_inj (fault_inj.data_ingress_fault_inj)
U VC I nte rfa Ce a n d CO n n e Ct I n It to ,-data_ingress_par (intf_wrapper.data_ingress_par)
y.data_ingress_par_fault_inj (fault_inj.data_ingress_par_fault_inj)
»-data_ingress_error_out (fault_log.data_ingress_error_out)
L3 y-data_egress (intf_wrapper.data_egress)
t h e d e S I n t h ro u h St r u CtS y.data_egress_fault_inj (fault_inj.data_egress_fault_inj)

. »-data_egress_par (intf_wrapper.data_egress_par)
y.data_egress_par_fault_inj (fault_inj.data_egress_par_fault_inj)
y.data_egress_error_out (fault_log.data_egress_error_out)

—)s
endmodule

Figure 9: Interconnections between DUT and FuSa Vector UVC inside TE top

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

FuSa Vector UVC — Fault Generation

class fusa_wector_uvc_seq extends uvm_sequence;

rand fault_inj_t err_inj_array;

// Testbench config object for creating test scenarios
fusa_tb_scenario th_sceanrio;

® An exa m p | e UV IVI Seq u e n Ce fo r fa u |t // Variable declarations for other sequence control

“uvm_cbject_utils(fusa_vector_uvec_seq)

ge n e ra t i O n . “uvm_declare_p_sequencer(vsequencer)

/f Constraint to control Fault Injection Types and Scenarios
constraint addr_egress_par_fault_inj_c {
if(tb_sceanrio.addr_egress_corruption_en) {
$countones({err_inj_array.addr_egress_par_fault_inj,

* Constraints are created based on the test | , =it

}

L] L]
I nte nt I O n // Constructor other methods
°

/f Task: body
virtual task body();
fusa_wector_uvc_seq_item #(INJ_VECTOR_SIZE, LOG_VECTOR_SIZE) fusa_uvc_seq;

* Parallel fault injection to multiple safety | /e s oo o mon o e

“uwm_create_on(fusa_uvec_seq(), p_sequencer.fusa_vector_uvc_sqr)

: // Pre-Error injection process (Register Configurations(Mask, Severity, Control etc.))
p O I n S pre_err_inj_config();
[]
// Sequence start
“uvm_rand_send_with(fusa_uvc_seq, { fault_inj_array == local::err_inj_array; })

* Can be wait for the fault reporting based | wrumaugys s o e e

// Post-Error detection process (Interrupt checks and CSR Checks)

on the fault monitored by the UVC.

endtask // body

endclass // fusa_vector_uvc_seq

Figure 10: FuSa Vector UVC Sequence Staring and Handling interrupts

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

FuSa Vector UVC — Fault Scoreboarding

* Fault Scoreboarding after Internal and external fault injection.
* Default checks present in scoreboards to flag unexpected fault reporting.

virtual function void write_exp fusa_uvc (fusa_wvector_uwvc_seqg_item trans);
fault_inj_t fault_inj_vector;
fault_log_t fault_log vector;

if{ !'$cast(fault_inj_vector, trans.fault_inj_array))
“uvm_error(get_name(), "Dynamic casting failed")

/f -- Predicting the log vector based on injection

if ($countones(trans.fault_inj_array) > @) begin
fault log_vector = generic_fault predictien(fault_inj_vector);
exp_fault_log_array_q.push_back(fault_log_wvector);

end
//-- Other function codes --
endfunction

/{-- Predicting err reporting vector based on error inj vector
virtual function fault_log t generic_fault prediction(input fault_inj t err_inj);
fault_leg_t err_log;

err_log.addr_ingress_error_out = (|{err_inj.addr_ingress_fault_inij,

err_inj.addr_ingress_par_fault_inj}) ? "hl :

err_log.addr_egress_error_out = (|{err_inj.addr_egress_fault_inj ,

err_inj.addr_egress_par_fault_inj }) ? "hl :

err_log.data_ingress_error_out = (|{err_inj.data_ingress_fault_inj,

err_inj.data_ingress_par_fault_inj}) ? "h1 :

err_log.data_egress_error_out = (|{err_inj.data_egress_fault_inj ,

err_inj.data_egress_par_fault_inj }) ? "hl :

return err_log;
endfunction

virtual function wvoid write_dut_ingress_trans (dut_trans_item trans);
dut_trans_item pred_trans;
fault_log t fault_log vector;

//-- created pred_trans. then updating the parity based on rcvd addr signal

pred_trans.addr_ingress_par = calc_parity(trans.addr);

//-- Example External error prediction

fault_log_wvector.addr_ingress_error_out = (trans.addr_ingress_par !=
pred_trans.addr_ingress_par) ? 1'bl : 1'bg;

//-- Other fault vector predictions

//-- Sending the item to the expected Q after all predictions

if ($countones{fault_log wector) » ¢) begin

exp_fault_log_array_gq.push_back(fault_log wvector);
end

/f-- Other function codes --

endfunction

Figure 11: Scoreboarding approach for Internal fault injection

Figure 12: Scoreboarding approach for External fanlt injection

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Results

* Reused across 3 Block level testbenches with different parameter
configurations.
* Two-man week timeframe for this UVC integration into UCle Adapter Block TB.
* Early bug identification and verification closure.

* Passive monitoring and checking enabled in Top TB by reusing this
module TB Envs.

* Reduced TB complexity significantly with parallel traffic and fault injection
support.

Results

Baselina = 0

£ Cursor-Baseline s 61 Bddns

e RTL module with 10’s and ——
Safety points

| & Baseline~=0

* Stress fault injection to the = B et o
safety instances to identify
corner bugs.

e 100% FC and CC achieved in
short time.

(2025

DESIGN AND V IFICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Results

* Example monthly bug rate. 90% bugs identified and closed in 3 months.
* Filtered FSM CC for a DUT safety instances.

Issues

u_duts wcie adapter sopi wcie adapesr cores ucoie adapter massband ob rdi flir packerob flit pack pda 685.0b e pack pds 655 edv sacnve det sm one hot err deter

u_duts scie adapter sop i wcee adapter coces uere adapter masband i b musc i of stall fdi wdy req ack smostall i mdy req ack sm ooe hoe err detect

u dut: wcie adapter top i wcye adaptar cores wers adapter masshand (sob musc rds stall eoq ack swm ons hee err detect

u_duts ocie adapter tops ucee adepter cores nere adapter masshand s b o flt empackd fler wopack pds 65bs b fl uopack pds 58bumpacker heeg ctrl sm cee hot e detect
u_dut: wcie adapter topi wcee adipeer cores uoee adapter masband s b sd: flt wapack b flo unpack crc check DP5IIB D2256B DPI28B4 & flx uapack cro check b sf &0 1d sm cae hot err detect 37
u_duts wcie adaprer topa_scse adapter cores uose adapter masshands b sé fla wmpackd flo wopack crc check DP312B DP256B DPI2EB . & fle wapack cre check crocheck sm_one_bot e detect

Name
v_dut gen o cxsi_uoe_cxs.i vae_fdi_smose bot stall_stxte
L ¢ v_dut 1_wcie_adaptersop 1_wcee_adapter_core 3 ucie_adapter_ mamband 1_s0_fidk_arbessx.ob_fdi_srbwer i_prosocol_selectmb_ob_cirl_sm_ooe_bot_em_desect
u_duts_ucie_adapter top 1 wcye_adapter core s ucie adapter mamband 1 o0 fd_arbomex.ob fdi_arbiter i@ _prosocol selectsaw fdi sm_cee_bhat_mr_deec
14 v_dut)_wcie_adapter sopa_wcee adapter coce) ucie adapter mamband o stack arb retry stack ab mux ctrl szl stack wb sm_cme bot_emr_detec
1 u_duts ucie sdapter sop i wcre adapeer coces vcre adapter mashond ob stack arb retrystack xb mux ctrl ezl stack ab nop idle count sm one hot_err desect
u_dut: wete_sdapter topi wcre adapter cores uere sdapter mamband ob stack arb retryreplay cmd_gen acknek seq num chpdet sm one Bot eor detect
10 u_dut: ocie adapter sopi wcee adapter cores uere adapter mamband ob stack arb petryseq num syne smoymc smostate one bot ey detect
II - .- - u_duts_scie_adapter top i wcee_adapter coces_ucwe adapter masshand i ib_replay_decode wack demsaci_ib_fhdr replay_decode replay_no_acknak tmeost sm_oee_hot_err_detect

u_dut: wcie adapter sopi wcee adapter core: uore adapter masshand ob rdi it packerob flit pack crogen DPSIIB 2568 12401 ob fin pack cepemcrcgen sm cee hot err detect
I I

u_duti scie adapter %op1 wcie adapter cored noie adapter mamband ob rdi it packercb flz pack pds 68bob fie pack pds 655 packer ofid cul == one boe emr detect
Figure 15: Graph representing UCTe Controller monthly ASF RTL bug rate Figure 14: Example Code Coverage Results for UCIe Adapter FSM fault instances

(2025

DESIGN AND VERIEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Questions

	Slide 1: A Generic Functional Safety Vector UVC
	Slide 2: FuSa RTL Design & Verification Flow
	Slide 3: Subsystem Design with Fault Insertion & Logging
	Slide 4: Block DUT With Fault Checkers and Generators
	Slide 5: RTL snippet showing parity check logic with fault injection support
	Slide 6: Example Block DUT Design with Safety Instrumentation
	Slide 7: Problem statement
	Slide 8: FuSa Vector UVC Env
	Slide 9: FuSa Vector UVC – Interface and Trans item
	Slide 10: FuSa Vector UVC - Monitor
	Slide 11: FuSa Vector UVC – Structs and Params
	Slide 12: FuSa Vector UVC – TB Arch
	Slide 13: FuSa Vector UVC – TB Top
	Slide 14: FuSa Vector UVC – Fault Generation
	Slide 15: FuSa Vector UVC – Fault Scoreboarding
	Slide 16: Results
	Slide 17: Results
	Slide 18: Results
	Slide 19: Questions

