
 
 

A Generic Configurable Error Injection 

Agent for On-Chip Memories 
Niharika Sachdeva, Arjun Suresh Kumar, Raviteja Gopagiri, Anil Deshpande, Somasunder Kattepura Sreenath 

Samsung Semiconductor India Research (SSIR) 

Bagmane Goldstone Building, Mahadevpura 

Bangalore - 560037 
 

Abstract— Memory reliability testing is indispensable today as errors in memory can cause not only serious hardware 

system failures but also compromises the safety aspect.  System chips contain error detection and correction modules to 

recover from these soft and hard errors, hence verifying such ECC circuits becomes imperative. All SoCs and memory 

controllers deal with various types of memory like SRAM, MRAM and Flash Memory. In this paper, we propose a generic 

and configurable UVM agent, which can simulate error injection on any type of memory. It can scale up with different 

address and data widths. It is capable of doing single, double, multi bit error injection using march, and scan test patterns 

for the entire address space. This standardizes an approach for verification of ECC blocks, and saves time on individual 

implementation of scenarios. 
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I. INTRODUCTION 

Memories are used everywhere ranging from satellites and planes in the sky, automotive and electronic equipment’s 

in the ground to the submarines below sea. As the size of memories are constantly becoming smaller, errors in 

memories are becoming more frequent. With small memories operating in low power, minuscule electrical disturbance 

is enough to create a bit flip to start a cascade of catastrophic events. Errors or bit flips are usually classified into soft 

errors and hard errors. Soft errors are transient and are usually correctable. They are created by temporary 

environmental factors such as particle strikes from radioactive decay and cosmic ray-induced neutrons. Hard errors, 

are caused by inherent manufacturing defect, insufficient burn-in, or device aging [5]. Once these manifest, they tend 

to cause more predictable errors as the deterioration is mostly irreversible. However, before transitioning into 

permanent hard errors, they may put the device into a marginal state causing apparently intermittent errors. If 

memories are used in high altitude, harsh weather or extreme temperature environments, they need extra reliability 

and safety components to keep the data error-free from both soft and hard errors. So all mission critical memory 

components are protected by Error Correcting Code (ECC) circuitry to detect and correct such bit flips. Radiolab did 

an episode on the case of a cosmic bit flip changing the vote tally in a Belgian election in 2003. The error was caught 

because one candidate got more votes than was logically possible. A recount showed that the person in question got 

4096 more votes in the first count than the second count. The difference of exactly 212 votes was a clue that there had 

been a bit flip. All the other counts remained unchanged when they reran the tally. There are many such incidents 

which occur due to bit flip in memories. Hence it is crucial to verify the ECC component of the design, which is going 

to recover the system in case of memory errors during operation. In this paper, we present a generic simulation-based 

verification method which will effectively find issues with ECC design in a faster way for different types of memories 

like SRAM, MRAM and Flash memory. This will reduce the verification time required for complete testing of all 

possible bit errors and combinations.  

The remaining parts of this paper is organized as follows: Section II describes about on-chip memories and 

organization. Section III briefly touches upon components of an ECC implementation. Section IV presents some of 

the related work in formal-based verification and simulation-based verification. Section V discusses about the 

implementation of generic error injection agent. Section VI contains the results and Section VII concludes the paper 

with ideas for future enhancements. 

II. ON-CHIP MEMORIES 

Memories can be classified based on the way it operates, RAM (Random Access Memory), ROM (Read Only 

Memory). In these 2 categories, there are many types of memories based on technology, volatility, programmability 

and system use-case like MRAM, Flash, SRAM, DRAM etc. as shown below in Figure 1. 

https://www.wnycstudios.org/story/bit-flip


 
 

 
Figure 1 Types of On-Chip Memory 

These memories are used in CPU, Caches, Primary Memory and Secondary Memory. Different memory types are 

used considering performance, volume and latency requirements of IP’s and SOC’s as shown in Figure 2. 

 
Figure 2 Memory Hierarchy 

DRAM is a volatile memory, which means it will lose the contents of its memory as the capacitors that store the bits 

discharge, commonly it will discharge within a few milliseconds. As a result, DRAM requires refresh cycles that read 

the data bits and then re-write the data back to the chip to re-enforce the stored data. DRAM also destructively reads. 

This means that when a bit is read from DRAM, the contents of the memory bit that was accessed are forgotten and 

therefore require a write-back operation. 

 

Another memory technology that exists, called SRAM, is a volatile memory technology that does not use capacitors 

to store bit. Instead, it includes a simple latch made of six transistors. While SRAM also loses its stored information 

when turned off, it does not require refresh cycles because its feedback loop design latches data when it is written to. 

Since it does not require a write-back operation to retain the data; this makes SRAM faster than DRAM.  

 

FLASH is a memory technology that is both similar to and distinct from DRAM. First, each bit in FLASH memory is 

made up of a single transistor, but these transistors have a special layer called a floating gate. Bits are stored in FLASH 

memory by using quantum tunneling to trap electrons in the floating gate layer, which makes the transistor more or 

less conductive. When a voltage is applied across the transistor bit, the conductive capability of that transistor will 

depend on whether there are electrons trapped in the floating gate. Unlike DRAM, FLASH memory is non-volatile, 

which means that FLASH memory will retain any data stored to it when turned off.  

 

The memories discussed so far all rely on storing electrical charge in some fashion. Magneto resistive memory 

(MRAM), by contrast, uses a magnetic layer to store a bit. A single large version of such a cell has been in use for a 

long time – in the read heads of hard disk drives. The bit cell consists of two magnetic layers. One has a fixed polarity; 



 
 

the other can have its polarity set either parallel or anti-parallel to the fixed layer. If both layers are polarized in the 

same direction, then the current tunneling across a barrier will flow relatively easily. If the layers are in opposite 

directions, then the tunneling current will have a harder time flowing. The cell value is read by measuring that current. 

MRAM technology has evolved for denser embedding in SoCs. The magnetic layers, however, require CMOS-

friendly materials that aren’t used for standard CMOS. Those extra steps can increase the cost of the finished wafer. 

But because of the small cell size, an MRAM-based SoC will be smaller than an equivalent SRAM-based SoC would 

be. 

III. ERROR DETECTION AND CORRECTION CODES 

ECC is implemented by adding some extra bits called parity or check bits to data bits of the memory. The logic used 

to generate those bits is based on popular algorithms like Hamming and BCH. Encoding involves generating parity 

bits from the data bits and storing them alongside in memory, this is generally done during a memory write. When 

memory read occurs, the decoding process will read the data and parity bits and detect if any errors. Depending upon 

the capability of the ECC algorithm implemented, it will be able to detect and correct errors or raise uncorrectable 

flags to let the design and user know the status of data corruption. Figure 3 shows the general flow below for any type 

of on chip memory we discussed in previous section: 

 
Figure 3 ECC Design components 

The verification of ECC hardware design usually focuses on the decoding process that it is able to detect and correct 

single/multiple bit errors as per specification. The ECC Circuit may fail to detect errors if more errors are injected 

than supported by the ECC algorithm. For Example: In a 3-bit Detection and 2-bit Correction ECC design, if more 

than 3 bit errors are injected, there is a possibility that error might not be detected or it might wrongly show as single 

bit error. 

IV. RELATED WORK 

There are two main categories of ECC block verification methodologies namely 

1) Formal Based 

2) Simulation Based 

A. Formal Based 

Formal verification involves two aspects, one is formal reasoning and other is formal modelling. Formal modelling 

involves developing a system model, which covers the complete specification of ECC logic and equations 

implementation. Formal reasoning involves mathematical reasoning to verify model and its associated properties, 

properties will cover both no error and presence of error behavior. The required characteristics of such an approach is 

that it is reusable in different implementations and converges in limited amount of time.  

However, it has been observed that it is generally not scalable and hence limited in actual real case of SOC memories 

where we might have different types of memories with varied capabilities of ECC [1]. Moreover, to converge such 

models faster, optimizations are needed which in turn require knowledge about internal circuitry. Such knowledge 

about hardware design may not be available always if vendor IP’s are being used. We have not explored formal for 

this paper; it can be a future enhancement for more comparison parameters. 

B. Simulation Based 

Second category of simulation deals with error injection to test how the memory or system recovers. This is the 

approach we take in our reactive agent as well. Error injection is mainly on the read/decoding process. We use UVM 

as a platform for the agent as it offers reusability, sufficient randomness and coverage to verify the design effectively. 

Most of the simulation-based verification targets for one specific type of memory or controller design [2]. The 



 
 

approaches mostly test some limited error combinations to verify the design, which affects the reliability of the 

simulation results.  Standardization of approach is required to ensure that we are achieving confidence in terms of 

combinations testing and coverage of design.  

The proposed agent aims to overcome the limitations listed. It can be configured for any type of memory and can be 

easily plugged in and run in parallel with existing memory read/write verification scenarios without knowing the ECC 

algorithm details.  

V. IMPLEMENTATION 

The agent can be instantiated in an existing target VE or used standalone with a memory module.  

 

 
Figure 4 Error Injection Agent Block Diagram 

 

Main components of the agent are:  

A. Sequences: This class contains code for scan and march patterns. For example, 4N operations of 

WRRDWRRD with random, all 1’s, all 0’s, all A’s, all 5’s data pattern. The errors are injected randomly 

or incrementally on the entire address space. It also has sequence to simulate stuck at faults (SF) and transition 

faults (TF). 

B. Sequencer: This module receives stimulus' data from the sequence and it sends this information into the driver. 

C. Driver: This unit drives the error information on the memory bus, it will corrupt the data during read.  

D. Monitor: This entity monitors all pin toggles on the memory bus interface. The monitor generates a transaction 

item of read/write data, address and error injection position. 

E. Coverage: The coverage class will continuously track the error injected positions and error address and this will 

give a measure of the quality of stimulus to the verification engineer on how much the ECC block is tested. Since 

state space of verifying an ECC block can quickly explode, this coverage class help to do closure faster. The 

crosses in the coverage class help to identify the address and data position range covered in different cases of 

error injection. Cross coverage between normal and parity bits are also available. 

F. Scoreboard: The transaction item from monitor is sent to an existing scoreboard of a verification environment to 

implement customized checkers or to the scoreboard of our agent to check if correction and detection are working 

as expected. This class compares predicted (from reference model) and observed (from monitor) ECC status. 

G. Configuration class:  The agent will identify reads from the interface connected to memory and points of error 

injection from the configuration class to do the actual forcing. This class will also contain randomized variables, 

which a user can customize as per requirement. Some of them are: 



 
 

1) Address range,  

2) Data width ranges 

3) Error count Type (single, double, triple or multiple) 

4) Continuous error insertion for all operations, this can help to model stuck at faults as well. 

5) Error insertion on fixed positions  

6) Error insertion based on Ratio  

It is independent of the type of algorithm used to do error correction/detection. It does random insertion and monitors 

the received data. Table 1 lists the error injection features supported by the agent.   
Table 1 Error Injection Configuration categories 

Feature  Description 

Type of error It supports single, double, triple, and multiple (more than 3) error injection 

Error injection mode It supports injecting on random address, fixed address, on all addresses starting from an initial address 

(incremental mode) 

Ratio mode  In case of multiple error injection, error can be injected in ratios like 80% are flipped, or all bits are 

injected. Random ratio can be also be selected. 

Non-stop mode Non-stop error injection is supported, continuously inject Error for all reads to model a completely 

faulty memory 

Fixed error position User can use this to only inject error on a particular data bit position, it can help to model stuck at faults 

and transition faults. 

Address range Address range can be configured to only insert randomly on a set of address 

Position range Position range can be configured to only insert in a particular data width range 

Error Count If in incremental mode, user can configure number of errors injected. 

Number of ECC’s If a particular data width is covered by multiple ECC blocks, then error injection can be configured to 

have parallel testing for those blocks.  

Coverage class The coverage class will contain cover points related to features mentioned and have crosses of them as 

well. To cover data width fully, a cover point has been added to see all bits are injected at least once. 

For double and triple error injection cases, data width is divided into 8 sections and cross combinations 

of those sections are added as bins. 

 

For standalone case, the agent offers a collection of march/scan patterns to test, which can be randomly configured 

for any address range, data pattern and order of operations.  
Table 2 Test Scenario Annotations 

r  Read on Memory 

w  Write on Memory 

r0 Read 0 on Memory 

r1 Read 1 on Memory 

w0 Write 0 on Memory 

w1 Write 1 on Memory 



 
 

w0/1 Write 0 in even address and write 1 in odd address 

r0/1 Read for 0 in even address and Read for 1 in odd address 

w1/0 Write 1 in even address and write 0 in odd address 

r1/0 Read for 1 in even address and Read for 0 in odd address 

↑ Increasing Memory Address Order 

↓ Decreasing Memory Address Order 

↨ Random Memory Address Order 

 

Different types of Patterns are available to test memory, but we found the below patterns to have maximum coverage 

and effectiveness in testing the ECC circuitry for on-chip memories. The patterns are as follows:  

A. MARCH C   : {↨ w0, ↑ (r0, w1), ↑ (r1, w0), ↓ (r0, w1), ↓ (r1, w0), ↨ r0} 

1. Write 0s in all address in any order 

2. Read from the lowest address and check for zero data. Write 1 at this Address and repeat r0, w1 until the 

last address 

3. Read from the lowest address and check for all one data. Write 0 at this address and repeat r1, w0 until 

the last address 

4. Read from the last address and check for zero data. Write 1 at this address and repeat r0, w1 until the 

first address 

5. Read from the last address and check for all one data. Write 0 at this address. Repeat r1, w0 until the 

first address. 

6. Read all address in any order and check for zero data. 

B. SCAN       : {↑ w0, ↑ r0, ↑ w1, ↑ r1} 

1. Write 0s to all address in ascending order of address 

2. Read and check for zero in the ascending order of address 

3. Write 1s to all address in ascending order 

4. Read and check for all 1s in the same order 

C. CHECKERBOARD  : {↑ w0/1, ↑ r0/1; ↑ w1/0, ↑ r1/0} 

1. Write 0s and 1s in alternating order while the address increases in ascending order till the last address 

2. Read the address in the same order and check for 0 and 1 in the same alternating order it was written. 

3. Write 1s and 0s in alternating order while the address increases in ascending order till the last address 

4. Read the address in the same order and check for 1s and 0s in the same alternating order it was written. 

D. RANDOM  : {↑ w, ↑ r, ↓ w, ↓ r, ↨ w, ↨ r} 

1. Write Random Value in ascending order of address 

2. Read back the same random value in the same order 

3. Repeat step 1 and step 2 but in descending and random order of address subsequently. 

Below is the snapshot showing agent in action, injecting errors continuously for reads to memory: 

 

 
Figure 5 Error Injection Waveform 



 
 

VI. RESULTS 

Using the combination of different patterns as mentioned above, we were able to cover both encoder and decoder logic 

of the ECC blocks for 2 configurations of MRAM using our agent as shown in Table 3. Each bit in the data width was 

injected with error at least once as well (part of the functional coverage). In a tested SOC, with multiple SRAM’s 

present, this common agent could be used for all memory instances avoiding repetition of code. The saving in 

testbench development time shows how our agent is easy to integrate and scalable. Since it can be run in parallel with 

patterns, it does not pose an overhead in simulation time, but instead helps in saving time to achieve coverage faster.  
Table 3 Tested memory configuration 

Memory Type Data width No of 
ECC 
Blocks 

Number of coverage 
bins (RTL design 
code) 

Simulation time saved to 
achieve 100% coverage 

Test bench 
development time 
saved  

MRAM 64 data bits + parity 
bits  

1 7100 25% 40% 

MRAM 2*(128 data bits + 
parity bits)  

2 18400*2  35% 45% 

SRAM 32 bits + parity bits 1 400  20% 50% 

FLASH 32 bits + parity bits 1 1589 25% 35% 

 

 Figure 6, Figure 7 and Figure 8 illustrate the difference in amount of time taken to achieve 100% coverage with 

different patterns for MRAM (64-bit and 128-bit configuration), Flash and SRAM respectively. Since 128-bit 

configuration had 2 ECC block, multiple thread option was used in simulation. 

 

 
Figure 6 MRAM coverage time results 

 
Figure 7 Flash coverage time results 
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Figure 8 SRAM coverage time results 

Utilizing this generic and configurable agent, error resiliency of the design has improved. We found critical and corner 

case bugs in a memory BIST controller module within a week, which otherwise would have required directed error 

injection scenarios to catch them. 

VII. CONCLUSION AND FUTURE WORK 

The impact of using this agent in early stages of system verification in as follows: 

1. A week of effort reduced to a day of work and verification engineer can save almost 50% of the time spent 

to design error injection scenario for changed specification or new addition of memory. 

2. Early detection of bugs in embedded ECC logic in memory designs and controllers 

3. Coverage class of the agent gives confidence that ECC circuit is good for sign off. 

 

As part of future enhancements, we are working on optimizing on our memory test patterns to close verification faster 

and continuously testing for different controllers and memories; Also, we would like to test our agent on actual 

memory netlists (non-behavioral model) and compare the performance metrics. 
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