A Comparative Study of CHISEL
and SystemVerilog, based on Logical
Equivalent SweRV-EL2 RISC-V Core

Junaid Ahmed - Lampro Mellon, Lahore, Pakistan, ahmedjunaid339 @gmail.com
Waleed Bin Ehsan - Lampro Mellon, Lahore, Pakistan, waleed.bin.ehsan @ gmail.com
Laraib Khan - Lampro Mellon, Lahore, Pakistan, laraib.khan@lampromellon.com
Asad Aleem - Lampro Mellon, Lahore, Pakistan, asad.aleem@lampromellon.com
Agha Ali Zeb - Lampro Mellon, Lahore, Pakistan, agha.ali@lampromellon.com
Sarmad Paracha - Lampro Mellon, Lahore, Pakistan, sarmad.paracha@lampromellon.com
Abdul Hameed - Lampro Mellon, Lahore, Pakistan, abdulhameed.akram @lampromellon.com
Aashir Ahsan - Lampro Mellon, Lahore, Pakistan, aashir.ahsan@lampromellon.com

Abstract

A detailed comparative study is done over an open source RISC-V core (SweRV-EL2) by Western Digital Cor-
poration implemented in SystemVerilog (2009) with its logical equivalent implementation in CHISEL (Constructing
Hardware In Scala Embedded Language) [1] . The CHISEL implementation of the SweRV-EL2 is named “Quasar”
open-sourced by Lampro Mellon. SweRV-EL2 is used as a golden reference model for RTL (Register Transfer Logic)
to RTL LEC (Logical Equivalence Check), since it is already silicon-proven therefore reducing the verification time.
This strategy reduces time as there is no need to build a pervasive verification infrastructure. Module-level verification
is done using directed tests to ensure correct functionality, and then the core is verified by using a co-simulation
environment. Core functional coverage is achieved using available test suite, directed test cases, and Google-DV
generated tests. After the verification, both implementations are subjected to LEC using Synopsys Formality. The
key points of the design are mapped and compared. Qualitative and quantitative comparisons are made between
both implementations. The key metrics for the qualitative comparison are code readability, code density, and code
maintenance. The key metrics for quantitative comparison are silicon area, maximum operating frequency, dynamic
power and simulation performance. CHISEL implementation delivered nearly the same PPA (Power Performance
Area) results while observing drastic improvement in code readability, code density, and code maintenance.

Index Terms

RISC-V, SystemVerilog, CHISEL

I. INTRODUCTION

We started with the development of the CHISEL and Scala language manual [2] and contributed to the open-
source community. After the successful CHISEL-based implementations of the Rocket Chip generator [3] and
Google Tensor Processing Unit [4], it was decided to implement the Western Digital Corporation’s SweRV-EL2
RISC-V core in CHISEL. SweRV-EL2 is a four-stage scalar, mostly in order pipelined core supporting only
machine mode. It supports RV32IMC instructions. The source code of CHISEL implementation is available on
the GitHub [5]. Quasar is implemented in CHISEL because it provides flexibility to hardware development and
several ways to accelerate the design of complex modules with remarkable industry-academia success. It introduces
many features and concepts intended to improve hardware design efficiency, especially useful for designing complex
IPs and projects. It contains both functional and OOP (Object-Oriented Programming) attributes to enhance hardware
design flexibility and reusability of different complex RTL modules required in almost all projects. HCL (Hardware
Construction Language) resembles the domain-specific languages leveraging the flexibility to design the hardware
at a higher abstraction level.

Flexibility to hardware development always remained a long-term goal for hardware communities dealing with
limitations of current hardware description languages like Verilog, SystemVerilog, or VHDL (Very High Speed
Integrated Circuit Hardware Description Language). The problem seems to start being addressed with the advent of
PyRTL (Pythonic Register Transfer Level) based on Python, BlueSpec based on Haskell, System-C libraries used
for HDL (Hardware Description Language) modeling, Xilinx HLS (High-Level Synthesis) tool used to develop
models in C language. HLS raises the abstraction level and can compile C/C++ functions to logic elements.
MATLAB provides an HDL Coder toolbox that generates synthesizable Verilog and VHDL code used for embedded
development, generally for FPGAs (Field Programmable Gate Arrays).

This study compares the two implementations of SweRV-EL2 to verify the advantages of using CHISEL over
traditional HDLs. The process began with the implementation of smaller modules which were verified with directed
tests. Once verified, the CHISEL generated module replaced its corresponding block in SweRV-EL2 core, and this
implementation was verified with our test suite that also included Google-DV generated tests. Once all the modules
had been verified, the entire CHISEL generated core was tested with SweRV-EL?2 using co-simulation and LEC.

In the rest of the document, the literature review is discussed in section II followed by the overview of the
architecture of Quasar in section III. The methodology observed throughout the project is detailed in section IV.
The experimental results along with the comparisons and findings are discussed in section V. At the end, a conclusion
is drawn based on the results and the adopted methodology.

II. LITERATURE REVIEW

The hardware design industry revolves around two major languages namely VHDL and Verilog but both of these
lack a key feature that is the flexibility. Though the induction of SystemVerilog was a silver line, it wasn’t as fruitful
as several other languages adopted for software development. One of the major reasons for ineffectiveness was that
most of the constructs aren’t supported by synthesis tools. SystemVerilog was introduced to improve flexibility,
design, and verification flows but the hardware community is still demanding some agile approach for development.
Various languages have emerged in the market to assist in the development. Jonathan Bachrach et al. [1] introduced
CHISEL, a new hardware construction language embedded in Scala that includes object-oriented programming,
functional programming and many other useful features to enhance design productivity and reuseability. CHISEL
allows the designers to write highly parameterized circuit generators and provides the testing framework to verify
the functionality, at unit and system levels. It can be done without generating Verilog from CHISEL. CHISEL offers
a standard library where different types of interfaces, functional blocks like FIFOs, shift registers, decoupledIO, etc
hardware constructs have been predefined. Scala is a strongly-typed language; this property enables CHISEL users
to define and reuse their specific functions. To add to its flexibility, CHISEL also includes some additional features
like type and width inference.

Paul Lennon et al. [6] performed a comparative analysis between CHISEL and Verilog using three different RTL
modules. In his analysis, first RTL is the Round-Robin Arbiter, second is N-bit FIFO (First In First Out) and third is
Round-Robin Complex Scalable Arbiter. The metrics evaluation include code density, design flow runtime, silicon
area, and the maximum frequency of operation. Two different FPGAs of Microsemi families are used for exploring
the differences. In the case of Round-Robin Arbiter, the ratio of Verilog to Scala lines of code is 1.18, design
flow runtime did not vary significantly and, there is a 17% boost using Verilog implementation in the maximum
operating frequency has been measured on SmartFusion2 FPGA device. In the case of FIFO, The lines of Verilog
code in both cases are approximately 90, while design flow runtime is measured a little less in the case of CHISEL.
There is no significant change in resource utilization and maximum operating frequency in the case of FIFO. It is
observed that in the case of Scalable Complex Arbiter, the Verilog implementation is three times longer than the
CHISEL implementation. Verilog outperformed CHISEL by a significant difference of 5% during the design flow
runtime and, the maximum operating frequency is almost identical when executing Verilog or CHISEL on both
devices.

Jean Bruant et al. [7] built an open-source automated SystemVerilog to CHISEL translator. They parsed a
synthesizable SystemVerilog file using ANTLR [8], which builds an abstract syntax tree that eventually maps

on custom IR. This work has four types of analysis and transformations: clock inference, reset inference, types
inference, and SystemVerilog syntactic-sugar translation. Finally, the emitter outputs CHISEL code.

Python language has gained traction in the last few years owing to its ease of use in machine learning, artificial
intelligence, and in various area. PyRTL was introduced by John Clow et al. [9] based on Python to improve the
development of complex architectures and their optimizations. In this approach, the python embedded hardware
design language serves as a wrapper over a well-defined set of parameters. The motivation for this approach was
that traditional hardware languages have a long learning curve. It supports signed types, hierarchies of wires using
bundles and has well-defined control structures. Similar to PyRTL, MyHDL introduced by J. Decaluwe et al. [10] is
a set of libraries to provide hardware designers with the simplicity and elegance of Python language. It is used for
hardware modeling, simulation, verification, and VHDL/Verilog code generation. Clash is an open-source hardware
description language introduced by Christiaan Baaij [11] based on Haskell used for the hardware modeling. It has
a compiler that generates synthesizable Verilog, SystemVerilog, and VHDL codes. It provides different libraries for
modeling hardware at a higher abstraction level.

The methodologies discussed above are not widely adopted; thus, verification of the design is a challenging task
for CHISEL users. A conventional approach for verification would be to generate the Verilog of the design and
then verify it using conventional verification methods. However, this method would not be efficient for large-scale
designs in CHISEL as interpreting the generated Verilog is quite a tedious task. To resolve this problem, a flow
named ChiselVerify is proposed by Andrew et al. [12]. It focuses on the verification efficiency and provides an
integrating framework with any hardware language compatible using black boxes. Moreover, it is focused on the
backwards compatibility with existing CHISEL environments. It is based on Universal Verification Methodology
(UVM) and SystemVerilog. It is used to enhance software productivity and verification of the digital design. The
tool uses the power and features of Scala to drive a verification process much similar to UVM. The proposed
solution greatly increases a verification engineer’s productivity as it allows the design to be tested using modern
high-level programming languages. The tool uses the black-box feature of CHISEL to incorporate any language for
testing purposes. Additionally, it is specified in [10] that Chisel Verify is quite similar in terms of verification using
SystemVerilog as it is capable to compute functional coverage, constrained random verification and bus-functional
models, etc.

Quasar Core Complex

DCCM

I-Cache

Quasar Core - RV32IMC Debug

LSU Bus IFU Bus Debug Bus @l DMA Slave
Master Master Master Port

64-bit AX14/ 64-bit AXI4/ 64-bit AXI4/ 64-bit AXI4/
AHB-Lite AHB-Lite AHB-Lite AHB-Lite

PIC

IFU

Figure 1: Quasar core complex. Figure 2: Instruction fetch unit.

IIT. SWERV-EL2 (QUASAR) OVERVIEW

Quasar is a four-stage scalar, mostly in-order pipelined core supporting only machine mode. The four pipelined
stages are: Fetch (F), Decode (D), Memory and Execution (M / X), and Retired (R). The high-level block diagram
is shown in Fig 1 and pipelined flow is shown in Fig 3.

The core is divided into four major blocks IFU (Instruction Fetch Unit), EXU (Execution Unit) , LSU (Load
Store Unit) and DEC (Decode Unit). DCCM (Data Closely Coupled Memory), ICCM (Instruction Closely Coupled
Memory), and I-cache are located on the same chip. Core also has PIC (Programmable Interrupt Controller) and
Debug Unit modules. There are four AXI/ APB configurable ports to communicate with external environment: DMA
(Direct Memory Access) slave port, debug master bus, IFU master bus and LSU master bus. Detailed discussion
of four major blocks is given below:

A. Instruction Fetch Unit (IFU)

IFU consists of four submodules, as shown in Fig 2. First is the IFC (Instruction Fetch Control). It is responsible
for making fetch requests and calculating new PC (Program Counter). The PC values are then passed to the branch
predictor and memory controller. A fetch request is made when there are no halt, stall, and flush signals. IFC also
controls the fetch queue operations. Whenever the queue is full, an event will be triggered to the PMU (Performance
Management Unit). The second is the branch predictor; it is responsible for predicting the next PC value and the
direction of the branch. Quasar has a 2-bit history table and a RAS (Return Address Stack) to cater calls and returns.
Third is the memory controller; it controls I-cache, ICCM, and stalls the lower pipe when a miss occurs in I-cache
or an un-correctable error occurs in the data fetch. Fourth is the aligner, in order to support 16-bit compressed
instructions in addition to normal 32-bit instructions. In the aligner there is a fetch queue of depth three and a
shifter module that aligns the data on every fetch request. If there is a 32-bit instruction right after a compressed
instruction, the aligner aligns the top half of the instruction to the lower half of the next instruction. In addition, it
aligns data coming from the branch predictor.

B. Decode Unit

The decode unit is responsible for decoding the instruction received from IFU. It also controls clock gating
logic for power optimization purposes and collects the trace data that holds the information required for tracing
an instruction or the exception. It consists of five sub-modules. First is the Instruction Buffer Control. It controls
whether the instruction from debug or from the IFU is going to be forwarded. Second is the Decode Control Unit;
it is responsible for decoding the instruction and controlling the data path. It has the capability for illegal instruction
handling, performance monitoring units, scheduling logic, CAM (Content Addressable Memory) is used to control

Fetch Decode Exu/Memory Retired

' stall ' stall

Figure 3: Pipeline stages of Quasar core.

dbg_cmd_valid,
write data, address,
debug type

Debug Module

Instruction ,PC,

‘branch information, Debug write data,
instruction fault type Debug rs1 select signal

Non block load signals,
Load Store information, LSU error pkt,
LSU stall signals, PMU

Instruction errors,
branch info for errors,
PMU, IC hit and miss
Flush,instruction kill, pre
sync, post sync,
illegal instruction

formation, CSR read data, LSU /DMA
Dec decode trap packet, PMU signals
Unit
laim id for csrs (meihap),

priority level (meicidpl)
Interrupt Information

write enables, write
address, write data, read
address

Branch Information,
Execution final flush
signals

branch packet, RS1,RS2 address, immediate , bypass
enables, CSR read alu,mul and div packet.TLU flush

RS1, RS2 operands read data
—

General Purpose Registers

Figure 4: Decode unit block diagram.

Decode Unit

non-blocking loads and traps. Third is the TLU (trigger logic unit); all CSRs of machine and some custom CSRs and
exception/interrupt handling logic is implemented in this module. Fourth is the GPR (General Purpose Registers)
and fifth is Trigger unit, it takes input packets from the TLU and compares them with the instruction PC and gives
result to the decode control. A packet of trace information is constructed which holds the information required for
tracing an instruction or the exception.

C. Execution Unit

Execution unit is responsible for executing arithmetic and logical operations. It receives data and control packets
from the decode unit and perform execution accordingly. Bypass muxes have been implemented for bypassing the
data to the LSU unit. Fig 5 shows the block diagram of execution unit. It has three submodules: ALU Control; it
can perform addition, subtraction, less than, greater than, equal to, greater equal, AND, OR, XOR and all types of
shift operations. It supports both conditional and unconditional branching. Logic has been implemented to detect
whether the branch is taken or not and it also generates flushing requests if branch is wrongly predicted. Second
submodule is Multiplier; it is used to multiply two signed 32-bit numbers (33 bits total, one for sign bit). A packet
is constructed in the decode unit which configures the control signals for multiplication. The third is the divider.
A multi-cycle out-of-pipeline divider does the execution of division in the core. In the divider unit, the division of
smaller numbers i-e 4-bits/4-bits is done by simple binary division in one cycle. In contrast, the division of numbers
greater than 4 bits are done by the Single bit Non-Restoring Division algorithm.

EXU m

Figure 5: Block diagram of execution unit.

Address is in DCCM (D/M/R)
Address is in PIC (D/MRR)
Start Address (D/M/R)
End Address (D/M/R)

Plc Read Data
Raw Valid Address Generation Lsu e
Contol Packet & Faults Check
Single / Double

Execution Unit

ECC Error
: ECC Error
Decode Unit Exception
Interrupt
Exception Packets ControlEgckets Load Forwarding
and Interrupts logic Store Data

Control Packets, Start Address
End Address, Flush,
Commit, Bus Requests

Bus Read Data System

SRAMs,

PMU Events ROMs,
AXI Requests MMIO

devices

Non Blocking Loads Imprecise Bus Erros

LSU

Figure 6: Block diagram of load store unit.

D. Load Store Unit

The Load Store Unit (LSU) executes load and store requests coming from the decode. It consists of six sub-units:
LSU control unit, DCCM control unit, Bus buffer, Store buffer, ECC (Error Correction Code) module, and Trigger
unit as shown in Fig 6. There are two sources from which the LSU control unit can receive load and store requests.
The first is DMA (Direct Memory Access) and the second is the decode; in both cases datapath is controlled by the
decode unit. The decode unit decides which request is going to be processed. There is a DCCM port of the LSU
that is connected with DCCM memory. All stores to the DCCM are passed through store buffer to minimize store
miss latency and also forward loads according the RISC-V memory consistency model. Load data can be fetched
from DCCM, PIC, or store buffer. There is an AXI / AHB-Lite master bus to perform load and store operations
on external components like SRAM, ROM, peripherals, and IO’s. All external address requests are passed through
the bus buffer which is connected with AXI/ AHB Lite bus.

IV. METHODOLOGY

The development of Quasar is categorized into four major parts. The first one includes comprehending the
micro-architecture of SweRV-EL2 core, which lead to a compilation of the MAS (Micro Architecture Specifications)
document. Once the document was completed, then the core was implemented in CHISEL. For verification purpose,
a co-simulation environment was developed, which compared the log files of both implementations. Tests that have
been written yielded a code coverage of 90%. It was evaluation that to get 99% code coverage much effort is
required. So, instead of achieving conventional verification goals, LEC was performed. The purpose of this work
is to build an equivalent core using CHISEL, the LEC is what was the most suitable as a first attempt. So, to
further solidify the verification, LEC was performed on both implementations and SweRV-EL2 is used as a golden
reference model. These steps are further elaborated below:

A. Design Development

FIRRTL (Flexible Internal Representation for RTL [13]) serves as a platform for writing circuit level transfor-
mations. Hence the design was initially written in CHISEL and is then transformed by FIRRTL to synthesizeable
Verilog. The design for the core was done in such a manner that once FIRRTL generates Verilog, it should represent
the same hardware as that of SweRV-EL2.

B. Functional Verification

Verilog for the individual modules were generated and then verified by using unit-level tests written in Sys-
temVerilog. These tests cover the basic functionality of the module as well as corner cases. After the preliminary
verification, each module was plugged in the original SweRV-EL2 core replacing its counterpart. A test suite
consisting of various RISC-V, Google-DV, and benchmarks was executed to identify any divergence from desired
functionality. Once Quasar was completed, it was verified using a co-simulation environment by subjecting them
to a diverse range of tests. Under this environment, post-simulation logs for each module were compared to ensure
functional equivalence

C. Logical Equivalence Check

The formal verification technique uses mathematical modeling to prove that two different design implementations
exhibit the same behavior by performing logical checks of flop-to-flop. Setting up the design for LEC takes library
elements, reference model and implemented design as input to perform mathematical modeling. The CHISEL
generated Verilog (implemented design) and original SystemVerilog (reference design) are added as implemented
design and reference model respectively, and their top modules are set. The initial step reads inputs of the design,
creates data structures and memories are considered as black boxes to facilitate underlying steps. It is split into
several logical cones. A logical cone is a block of combinational logic that drives the same compare point. The inputs
to a logical cone may include primary input pins of the module, output ports from the register, and output ports
connected to memory blocks. Compare points usually comprise of registers, primary output ports and input ports to
a black-boxed section. Due to signal renaming in generated Verilog, 15281 signals are user-matched, including 1319

co-simulation
enviornment

comparison

l

pass/fail

Figure 7: Functional verification method adopted. Figure 8: LEC verification flow.

ports, 13784 DFFs (D-Flip-Flops), 122 Latches, and 56 black box pins. Once the setup was complete, both designs
were compared and their key points were examined. The result can be one of the three i.e. equivalent, inverted
equivalent or nonequivalent. If the result is any of the latter two, then the design needs to be revised and rechecked
to get logical equivalence. First, the method was performed with individual modules leading to entire blocks, and
then complete cores were provided as a reference as well as implemented models to the tools for performing LEC.

In this particular case, we already have a reference model to verify our design. However, if there is no such a
model available then verification can be performed by the development of functional equivalent model in some high
level language like C/C++ or by exploiting the layered test-bench approach. There is some additional work in the
layered test-bench approach to write cover points and assertions for functionality and sanity checks. Additionally,
an open source tool named ChiselVerify is proposed in [12] can be used for this type of verification approach.

V. EXPERIMENTAL RESULTS

A frequency sweep was performed using 130 nm SkyWater-PDK library on both Quasar and SweRV-EL2 to
find their respective maximum operating frequencies. The tool used for this sweep was Synopsys Design Compiler
(DC), and for simulations is Synopsys VCS. There is no significant difference in the execution time of both the
implementations is observed. Through the frequency sweep, three key matrices are evaluated. A detailed description
of the results is given below:

A. Maximum Frequency

Both implementations are subjected to a frequency sweep from 25 MHz to 350 MHz. Quasar reached a maximum
frequency of 141 MHz at the target frequency of 150 MHz, whereas, for SweRV-EL2, it was 145 MHz at a target
frequency of 225 MHz shown in Fig 9. These results show SweRV-EL2 is about 2.7% better in frequency with
respect to Quasar. Table I shows the frequency sweep from 25 MHz to 350 MHz and both implementation’s effective
frequencies.

Effective Frequency Quasar and SweRV

== Effective Frequency Quasar (MHz) == Effective Frequency SweRV (MHz)

25 50 75 100 125 150 175 200 225 250 275 300 325 350

Target Frequency (MHz)

Figure 9: Target frequency comparison

Table I: Operating frequency comparison of both cores Table II: Comparison of cell area of both cores

Target Frequency Effective Frequency Target Frequency Total Cell Area
(MHz) Quasar (MHz) | SweRV (MHz) (MHz) Quasar (um?) | SweRV (um?)

25 25 25 25 938,648 952,117

50 50 50 50 986,381 1,008,292
75 75 75 75 985,884 1,040,223
100 100 100 100 992,014 1,056,209
125 125 125 125 1,022,198 1,058,341
150 141 134 150 1,050,860 1,074,543
175 139 141 175 1,050,117 1,077,312
200 140 132 200 1,048,001 1,093,162
225 138 145 225 1,044,916 1,097,709
250 137 141 250 1,047,533 1,096,681
275 140 137 275 1,049,092 1,095,016
300 141 133 300 1,050,784 1,093,012
325 140 143 325 1,054,411 1,094,366
350 141 138 350 1,051,685 1,096,023

B. Silicon Area

Silicon area for both SweRV-EL2 and Quasar are measured at the target frequency where the respective imple-
mentations have maximum operating frequency. For Quasar, the area measured at the target frequency of 150 MHz
is 1050860 um? and for SweRV-EL2, area at the target frequency of 225 MHz is 1097709 um? as shown in Fig
10 and in Table II. Results show that Quasar is 4.2% smaller in area relative to SweRV-EL2.

Tota Cell Area Quasar (mm2) and Tota Cell Area SweRV (mm2)

== Tota Cell Area Quasar (mm2) == Tota Cell Area SweRY (mm2)

1,100,000

1,050,000 4

1,000,000

950,000 4=

900,000 +
25 50 75 100 125 150 175 200 225 250 275 300 325 350

Target Frequency (MHz)

Figure 10: Graph showing comparison of silicon area.

C. Dynamic Power

Dynamic power for both the implementations is also calculated at maximum operating frequency. The maximum
operating frequency for Quasar is 141 MHz and for SweRV-EL2 is 145 MHz. By linearly increasing the values of
target frequency, dynamic power at maximum operating frequency for Quasar is 80.68 mW and for SweRV-EL2
is 83.95 mW, as shown in Fig 11 and in Table III. Results show that Quasar is 3.8% better in power at maximum
operating frequency relative to SweRV-EL2.

Dynamic Power Quasar (mm2) and Dynamic Power SweRV (mm2)

== Dynamic Power Quasar (mW) == Dynamic Power SweRV (mW)

200 +

150 +

100

50

50 100 150 200 250 300 350

Target Frequency (MHz)

Figure 11: Comparison of dynamic power.

Table III: Comparison of dynamic power consumed

Target Frequency Dynamic Power
(MHz) Quasar (mW) | SweRV (mW)
25 14.32 14.87
50 28.66 29.87
75 43.07 43.60
100 57.33 57.85
125 71.99 74.27
150 86.11 87.03
175 101.19 102.41
200 114.97 116.60
225 129.49 132.57
250 143.70 147.78
275 157.83 160.52
300 172.89 177.03
325 187.33 190.15
350 201.05 201.05

D. Code Maintenance and Readability

Maintenance of code in the context of this paper reflects how easily, and effectively crucial portions of the code
are updated. In CHISEL, abstraction of describing behavior at a higher level leads to a reduced number of code
lines. It is observed that the CHISEL implementation for Quasar has about 35-40% fewer lines of code as compared
to SystemVerilog implementation of SweRV-EL2. It results in better maintenance because compact code is very
easy to update.

The readability of code in the context of this paper means how easily a person can understand the micro-
architecture just by reading the code. It has two dimensions: the readability of the CHISEL code itself, and the
second is the readability of generated Verilog code using FIRRTL. An assumption made is that the person reading
the code is well versed in CHISEL and SystemVerilog. For such a person, he/she would feel very easy in reading
the code in CHISEL as compared to SystemVerilog. The fundamental reason behind this is the abstraction level.
A reader of code can easily and readily grasp the ideology of the micro-architecture from a higher abstraction
compared to a reader, reading code at the low level. But in the case of generated Verilog, readability is much worse
than that of SystemVerilog. This is because FIRRTL generates Verilog code at gate level, therefore it is hard to

understand.

VI. CONCLUSION

This effort was made to realize the power of CHISEL against SystemVerilog. It is observed that CHISEL
implementation is marginally better in quantitative and considerably better in the qualitative analysis as compared
to SystemVerilog. The CHISEL community is not well diverse compared to SystemVerilog, so there is little support
available for CHISEL on publicly accessible networks. The majority of the semiconductor vendors are still using
SystemVerilog for developing chips and tools, So there is a need to convert the CHISEL to Verilog for verification
purposes. This is the major bottleneck because the verification task involves more steps of conversions, but these
conversions are not needed when the code is written in SystemVerilog. The CHISEL community needs to develop
its own verification tools to exploit CHISEL to its fullest potential.

(1]

(2]
(3]

(4]

(3]
(6]

(7]

(8]
[9]

[10]
[11]

[12]

[13]

REFERENCES

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis, J. Wawrzynek, and K. Asanovi¢, “Chisel: constructing hardware in
a scala embedded language,” in DAC Design Automation Conference 2012. 1EEE, 2012, pp. 1212-1221.

Lampro-Mellon, “Lampro-mellon/chisel-training.” [Online]. Available: https://github.com/Lampro-Mellon/Chisel-Training

K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and evaluation of the first tensor processing unit,” JEEE Micro, vol. 38,
no. 3, pp. 10-19, 2018.

Lampro-Mellon, “Lampro-mellon/quasar.” [Online]. Available: https://github.com/Lampro-Mellon/Quasar

P. Lennon and R. Gahan, “A comparative study of chisel for fpga design,” in 2018 29th Irish Signals and Systems Conference (ISSC).
IEEE, 2018, pp. 1-6.

J. Bruant, P.-H. Horrein, O. Muller, T. Groleat, and F. Pétrot, “(system) verilog to chisel translation for faster hardware design,” in 2020
International Workshop on Rapid System Prototyping (RSP). 1EEE, 2020, pp. 1-7.

T. Parr and K. Fisher, “L1 (*) the foundation of the antlr parser generator,” ACM Sigplan Notices, vol. 46, no. 6, pp. 425-436, 2011.

J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood, “A pythonic approach for rapid hardware prototyping and
instrumentation,” in 2017 27th International Conference on Field Programmable Logic and Applications (FPL). 1EEE, 2017, pp. 1-7.
J. Decaluwe, “Myhdl: a python-based hardware description language.” Linux journal, no. 127, pp. 84-87, 2004.

C. Baaij, M. Kooijman, J. Kuper, M. E. T. Gerards, and E. Molenkamp, “Tool demonstration: Clash-from haskell to hardware,” in
Proceedings of the 2nd ACM SIGPLAN symposium on Haskell. ~Association for Computing Machinery (ACM), 2009, pp. 3-3.

A. Dobis, T. Petersen, K. J. H. Rasmussen, E. Tolotto, H. J. Damsgaard, S. T. Andersen, R. Lin, and M. Schoeberl, “Open-source verification
with chisel and scala,” arXiv preprint arXiv:2102.13460, 2021.

A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson et al., “Reusability is firrtl
ground: Hardware construction languages, compiler frameworks, and transformations,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2017, pp. 209-216.

