

1

A Novel Approach to Standardize Verification
Configurations using YAML

Nikhil Tambekar, Technical Specialist, Nokia Solutions and Networks Oy, Tampere, Finland,
(nikhil.tambekar@nokia.com)

Abstract— With the increasing complexity of System-On-Chip designs, hardware verification has evolved into a
multidimensional challenge. Balancing first pass silicon and a fast time to market is delicate but essential consideration
for the SOC organizations. Verification has been always in critical path in the SOC development and any improvements
in verification execution efficiency has exponential effect on the quality of the SOC. Effective configuration
management of different areas in the verification environment combined with automation scripting helps to achieve
appreciable boost in the execution efficiency. In this paper, a single YAML format is proposed to handle all the
configurations in the verification environment. Using a standardized configuration format along with scripting saves
verification time by an order of magnitude and makes the environment more reusable and maintainable across the
projects.

Keywords— System-On-Chip, Verification, Configuration, YAML

I. INTRODUCTION

The scope of verification environment encompasses a comprehensive set of tasks including testbench
development, various tool integration, automation scripting, regression setup and Continuous Integration (CI).

A verification environment consists of three key components which includes firstly, a testbench to simulate
testcases for desired Design Under Test (DUT) configurations, which involves configuring testbench using
simulation runtime options, controlling randomization constraints, functional coverage monitors etc. Secondly, the
environment includes configuring RTL, establishing testbench build system, creating models for generating
reference data, automating testcase generation and setting up regressions. Thirdly, scripts are used for processing
simulation results, parsing log files to aid debugging and generating coverage reports. Additionally, verification
engineers play a crucial role in setting up CI workflows, creating verification plan, and status reporting. It involves
learning different tools, inhouse methodology, and learning scripting languages. The modern-day IPs and SOCs are
configurable and developing a user-configurable verification environment is a necessity for maintainability and
reusability across multiple projects.

II. CHALLENGES ASSOCIATED WITH CONFIGURATION

As stated earlier, configurability plays a pivotal role in the verification environment. However, configurations
are unique for each component of the environment and currently there is no standard way of defining the verification
configurations. Owing to the non-standard formats, automation scripting becomes more complicated and takes
more effort for the development because engineers need to define custom configuration format. Consequently,
engineers may opt for manual methods which, unfortunately can lead to decreased execution efficiency and an
environment vulnerable to mistakes. Moreover, custom configurations can detrimentally impact the reusability and
maintainability of scripts and tools. These user-specific configurations also contribute to a steeper learning curve
for new team members in familiarizing the setup and carrying out enhancements. To summarize, standardization
of a configuration format emerges as a crucial requirement in SOC organizations to enhance execution efficiency.

III. PROPOSED SOLUTION FOR HANDLING VERIFICATION CONFIGURATIONS

In this paper, a YAML (YAML ain’t markup language) format is proposed for representing all the configuration
requirements in the verification environment which is depicted in Figure 1.

2

Simulation result
processing

Regression Test list

YAML Configuration

Regression Test Modes

Functional Coverage Plan

UVM testbench
framework generator

Build System

Debug scripts

Design Package file
generation

Design Configuration
Specification

Test Vectors

UVM runtime options and
testcase config

System Verilog code
generation

System verilog random
constraints

CI scripts

Figure 1 YAML based configuration in verification environment

This paper comprises of brief introduction to YAML format and templating language, example implementation
of how a single format is applied to different verification environment setups, future enhancements, and conclusion.

IV. YAML FORMAT FOR CONFIGURATIOONS

YAML (YAML Ain’t Markup Language) is a human-readable data serialization format often used for
configuration files and data exchange between languages with different data structures. It is often used in software
development, particularly for specifying configurations, settings, or data structures that need to be human-readable
but also machine-parseable. Key features of YAML are simple syntax, supports various data types which are
suitable for cross language data exchange and programming language agnostic. Some examples of YAML
configuration formats are shown in Figure 2 below:

#Interface definition in YAML
input_data_if:
 Interface_type: axi4
 Data_width: 128
 Min_addr: 0x1000
 Max_addr: 0xffff

Output_data_if:
 Interface_type: axi_stream
 Data_width: 128
 tkeep_support: Yes

#YAML test configuration
files:
 input_file: in.bin
 output_file: in.hex

variables:
 test_name: smoke.test
 test_params: cfg_mode0
 random: True

Figure 2 YAML file configuration format

XML, JSON and YAML are commonly used formats for representing structured data. XML is a markup
language, whereas JSON and YAML are data serialization formats. XML uses tags to define the elements and
stores data in hierarchical structures, whereas data in JSON is stored like a map with key/value pairs. YAML, on
the other hand, allows representation of data both in list or sequence format and in the form of a map with key/value
pairs.

3

XML is used for data interchange (that is, when a user wants to exchange data between two applications). JSON
is better as a serialization format and is used for serving data to application programming interfaces (APIs). YAML
is best suited for configuration.

V. PROPOSED IMPLEMENTATION OF CONFGURATIONS

Figure 3 below illustrates how a YAML file parsing library and a templating language like Jinja2, can be used
to process the configurations in YAML for verification environment which would help in the automation process.

YAML Config file

Input Template
(e.g. Jinja2)

Python Script Required configuration

Figure 3 Scripting Setup using YAML and template

A templating engine, such as Jinja2, is a library that enables the separation of code and content. It allows
developers to define templates with place holders for dynamic data, which can be populated at run-time. Special
placeholders in the template allow writing code like Python syntax as shown below in Figure 4.

Module {{module_name}}_top #Variable
example

{% if loop.index is divisibleby 3 %}
#condition Code
{% endif %}

{% for item in seq %} #Looping
 {{ item }}

{% endfor %}

from jinja2 import Environment

env = Environment()

template=env.get_template('regr_list.tpl')

config=yaml.safe_load(open('./
regr_cfg.yaml','r'))

test_list = template.render(config)

Figure 4 Jinja2 Template and Python code

VI. YAML CONFIGURATION EXAMPLES IN VERIFICATION ENVIRONMENT

A. Build System

Build system is used to transform the source code written by engineers into executable binaries. GNU makefile
is commonly used in verification environment to build simulator executables. The build complexity increases at
subsystem and SOC level, where multiple IPs and libraries are reused and writing a Makefile becomes a tedious
job. To overcome this problem, the build specification can be represented using YAML format and the makefile
syntax in a template format. Using a YAML and template processing script, the Makefile can be generated. This
approach can speed up the build setup and improves maintainability and ease of defining a build. Figure 5 below is
a sample representation of a build specification.

YAML Build
Config file

Makefile for build

Makefile Template

simulator: SIM1 | SIM2
build_rtl:
-dut_filelist:
 - $WS/rtl/dut_filelist
 - library_filelist
-tb_filelist:
 - $LIB/vip_filelist
 - verif/tb_filelist

-compile_opts:
 - defines: [MODE=A,ENABLE_WAVES=1]
 - sim_opts: [EDA tool comp options]

-dependencies: ./env/*.svh

Python Build
Makefile

generating
Script

Figure 5 YAML Config and Template Based Build flow

4

B. Regression Test list and Regression mode specification

Regression is a key element of verification process which involves a collection of testcases and simulating the
tests regularly on the DUT with different randomization seeds and DUT configurations to achieve coverage. A
typical regression test list would contain approximately thousands of tests with a combination of simulation runtime
options. Developing a test list and maintaining many tests for regression is a time-consuming effort and prone to
mistakes.

To achieve coverage goals and ensure that DUT is verified in all the configurations, testcases need to be run in
multiple regression modes. It means testcases in a base test list are simulated for different DUT features using
another set of runtime arguments. When the base test list grows, creating multiple variations from it would be
challenging. Also, if any changes are needed in the tests, they would be done at multiple places in the regression
lists which causes hardship to engineers, and it can lead to missing certain crosses of the configurations.

A proposed method to overcome this limitation is to specify a base test list and different DUT configurations in
the YAML format which is illustrated in Figure 6 below. It leaves engineers to maintain only one base test list and
regression modes making the regression maintenance manageable. Further efficiency improvement could be
achieved using a templating language to represent the base test list. Leading EDA vendors have been using YAML
format in their regression tool offerings.

Test_list:
{% for test in tests %}
-test_name: {{test[‘name’]}}
 -build_name: {{test[‘build’]}}
 -run_opts: test.opts
{{test[‘run_opts’]}}
 -priority: 2
 -test_group: {{test[‘group’]}}
{% endfor %}

Test list Template

regr_modeA:
-name: [test1, test2, test3,
test4]
-build_name: build_full_rtl
-run_opts: “ENA_MODEA=1”
-group: stress_modeA_regr

regr_modeB:
-name: [test1, test10, test11]
-build_name: build_full_rtl
-run_opts: “ENA_MODEB=1”
-group: stress_modeB_regr

YAML Config file
for regression modes

Test_list: //Regr_modeA
 -test_name: test1
 -build_name: build_full_rtl
 -run_opts: test.opts +ENA_MODEA=1
 -priority: 2
 -test_group: stress_modeA_regr

 -test_name: test2
 -build_name: build_full_rtl
 -run_opts: test.opts +ENA_MODEA=1
 -priority: 2
 -test_group: stress_modeA_regr

//Test 3 and test 4 not illustrated

//Regr_modeB
-test_name: test10
 -build_name: build_full_rtl
 -run_opts: test.opts +ENA_MODEB=1
 -priority: 2
 -test_group: stress_modeB_regr

 -test_name: test11
 -build_name: build_full_rtl
 -run_opts: test.opts +ENA_MODEB=1
 -priority: 2

 -test_group: stress_modeB_regr

Python script to generate
regression modes

Generated
Regression Test list
for different modes

Regression
Tool

Figure 6 Regression mode automation using YAML and template

C. UVM Testbench Simulation time argument control

System Verilog UVM (Universal Verification Methodology) testbench is made configurable using runtime
options. The runtime options are used for controlling testbench parameters, DUT features and randomization
constraints without the need of recompilation. The literature on UVM methodology discourages writing functional
code in testcases. However, a clear guidance on writing configurable testcases is missing. The UVM command line
processor and plusargs provide limited capability to specify configurations and maintaining a large set of runtime
options is a challenge.

5

As shown in Figure 7, the YAML format can be used to specify testcase configurations. A generic System
Verilog config class (extended from uvm_object) can be developed to parse YAML and map the configurations to
SV class variables. This SV class objects can then be used in the testbench to enable scenario-specific sequences
and to provide constraint hooks for randomization. It would make the UVM testbench more reusable for multiple
configurations.

The advantages of using YAML based testcase definition are as follows:

 It allows writing both directed and random test scenarios.

 Testcases can be written and modified without recompiling the testbench code.

 Vertical reuse (IP to Subsystem) would be easier because the testcase defines only test scenarios.

 Language independent testcase specification

 Testcase generation can be easily automated for configuration variations.

directed_testcase.cmd

constraint_random_test.cmd

test_config:
 -num_packets: 25
 -mode: random
 -timeout: 10000

Packet_formats:
 -types: [A, B, C]
 -rand_distA: 10
 -rand_distB: 50
 -rand_distC: 20
 -size: [1,1024]

test_config:
 -num_lanes:1
 -mode: directed
 -timeout: 10000
 -num_packets: 3

Packet_formats:
 - packet: 0
 - type: TypeA
 - size: 64
 - inject_error:0
 - packet: 1
 - type: TypeB
 - size: 128
 - inject_error:1
 - packet: 2
 - type: TypeC

YAML Parser in
System Verilog

UVM Test

Test Config class
Extends uvm_object

Scoreboard

UVM Agents

Coverage

CoverageUVM Sequences

1. sim_exe +TEST_CONFIG=./cpmstraint_random_test.cmd
2. sim_exe +TEST_CONFIG=./directed_test.cmd

Figure 7 YAML testcase used in SV UVM Testbench

6

D. YAML based design specification for automation in the verification environment

As the SOC designs have become more complex, the process of interpreting architecture into design parameters
and converting specification into a design has become cumbersome. In case of specification updates, the changes
need to be made in all the environment components which further delays the execution, and the manual changes
may introduce bugs in the system.

Machine readable specifications can facilitate design and verification automation more effectively. The
proposed method is to represent the design micro-architecture specifications in the YAML format which includes
design interfaces, memory configurations, config registers, instruction formats, packet formats, data structures, and
project specific address map. The configuration file can be maintained in the project repository as a single point
reference for the specification. As the specification is available in the machine-readable format, automation scripts
can consume the YAML configuration file to generate the design and verification environment parameters as shown
in Figure 8. This approach makes the environment more scalable and easier to maintain while handling large set of
parameters which further improves execution efficiency and quality of deliverables. The YAML based
specification file can be used for various utilities in the project such as:

1) Design Environment:

 Creating package files in VHDL or System Verilog.

 Code generator for Configurable RTL modules/entities.

 Generating module instance parameters for design integration.

 Representing IO cells to create SOC top level entity.

 Code generation for Software configuration register blocks in RTL.

2) Verification Environment

 SV/UVM testbench framework generator code including VIP configuration.

 Creating package files, data structures for testbench.

 Interface specification for protocol checkers, formal verification setup.

 Extracting parameters for functional coverage implementation

Desgin Spec in YAML

clk_period: 1.5Ghz
Interfaces:
 -Interface_type: axi4
 name:
input_packet_intf
 data_width: 128
 min_addr: 0x1000
 max_addr: 0xffff

Config_registers:
 -name: ID_reg
 address: 0x0000
 access: “RO”

Memories:
-name: ingress_memory
 size: ‘h200000
 width: 64
-name: egress_memory
 Size: ‘h100000

address_map:
 -name: boot_region
 start_addr: 0x0f000
 end_addr: 0x0f0f00
 access: “RO”
-name: pcie_region
 start_addr: 0x10000
 end_addr: 0x1f0000
 access: “RW”

Memory map in
YAML

YAML Parser in
Python

Design:
- SV/VHDL code generator
- Register map in RALformat
- SV/VHDL package files

Verification:
- UVM Testbench code generator
- SV package files
- Interface protocol checkers

 Design Environment

Verification
Environment

Figure 8 Automation with Design Specification in YAML

7

E. Functional Coverage Plan in YAML

Functional coverage is a measure of how much functionality of a design has been exercised by the testbench. It
involves extracting IP features, design configurations, various data structures and packet formats. The completeness
of functionality also depends upon how exhaustive the coverage plan is and the correctness of its implementation.
Although functional coverage is important, it’s implementation is considered as a secondary work in the execution.

 This work can be automated if the coverage plan is defined in a machine-readable format like YAML, which
will help to enable the coverage reporting early phase of the project. Using a templating language like Jinja2, the
syntax of cover groups can be specified and if the design specification is also available in machine-readable format,
the scripts can be developed for the coverage sampling parsers. This proposed setup would significantly improve
quality of the coverage generation.

Nowadays, Python based libraries are available for implementing functional coverage. It gives added benefit of
running functional coverage on reference models and representing abstract architectural features in coverage.
Figure 9 below illustrates YAML based functional coverage flow.

coverGroup_AXI_Transaction:
 coverPoint_burst_len:
 -bins: [1,4,8,16,32]
 -illegal_bin: [64]
 coverPoint_burst_type:
 -bins: [FIXED, INCR, WRAP]
 coverPoint_addr_range:
 -bins:[(0,’hffff],
(10000,20000),’hffffff]
 cross: [covPointA covPointB]

coverGroup_Packet_Header:
 coverPoint_packet_types:
 -bins [typeA, typeB, typeC]
 coverPoint_header_param:
 -bins [long, short]
 coverPoint_Packet_sizes:
 -bins[(0,100),(101,1001),(256)]

 -illegal_bin:[512]

YAML Parser and Python Script
to generate

1. functional coverage code
2. coverage sampling code

covergroup {{cg[‘name’]}} with function
sample ({{cg[‘sampling_vars’}});
{{cg[‘coverpoints’]}}

endgroup

YAML Based Design Specification

1. Functional coverage
System Verilog file

OR
2. Functional coverage

Python classFunctional Coverage Plan

Template File

Figure 9 YAML based functional coverage flow

8

VII. CONCLUSION AND FUTURE WORK

In this paper, a single YAML format is proposed for handling verification environment configurations. An
effective configuration management along with automation scripts would expedite design verification by
maximizing productivity, optimizing resource efficiency, and accelerating time to market. The saved bandwidth of
engineers using the automation could be utilized for the domain specific use-case verification which would further
improve quality of the SOCs. Investing in automation has significant benefits and it is a foundational pillar in the
shift-left strategy of SOC design cycle.

Future work includes, developing Python libraries for handling various configurations and deploying in multiple
SOC projects. Additionally, developing a System Verilog UVM based YAML parser which then could be
integrated in any testbench environment.

ACKNOWLEDGEMENTS

I am thankful to my current managers Sakari Patrikainen and Axel Jahnke for giving me the opportunity to
work on cutting edge technology and providing continuous support in exploring new verification methodologies. I
would like to thank my ex-colleague and friend Maghawan Punde, who demonstrated from his scripting skills, the
importance of automation and is a true inspiration for me. I am profusely thankful to my ex-manager and mentor
Milind Patil who guided me on verification strategies, automation techniques and creative way of working through
his innovative leadership skills.

REFERENCES

[1] Universtal Verification Methodology(UVM) 1.2 User Guide

[2] YAML Documentation (https://yaml.org/)

[3] Jinja Templating engine (https://jinja.palletsprojects.com/en/3.1.x/)

[4] Python YAML library (https://pyyaml.org/)

