
A Compositional Simulation Framework for Testing
Adversarial Robustness of Deep Neural Networks

Youssef Maher Nader∗, Mostafa Lotfy Hatab∗, Mazen Mostafa Ghaleb∗, Safia Medhat Bakr∗,
Tasneem A. Awaad† ∗, Ahmed AlGanzouri†, Mohamed Abdelsalam†, and M. Watheq El-Kharashi∗‡

∗The Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
†Siemens EDA - Cairo, Egypt

‡Department of Electrical and Computer Engineering, Faculty of Engineering & Computer Science,
University of Victoria, Victoria Canada

Emails:{youssefmaher725, mostafaXlotfy, safiabakr12}@gmail.com, mazenghaleb@outlook.com, {tasneem.awaad.ext@siemens.com,
tasneem.awaad@eng.asu.edu.eg}, {ahmad.al-ganzouri, mohamed.abd el salam ahmed}@siemens.com, watheq@engr.uvic.ca

Abstract—Deep neural networks (DNN) have reached impres-
sive performance in computer vision, making them a natural
choice for object detection problems in automated driving.
However, DNNs used for object detection are known to be highly
vulnerable to adversarial attacks. Even small changes to the
input such as adding a customized noise pattern that remains
invisible to the human eye, can stimulate silent prediction errors.
In this study, we present a compositional simulation framework
for testing the adversarial robustness of DNNs used in object
detection. We demonstrate our framework with a comprehensive
case study of a speed-sign detector model with two different
adversarial attacks.

Index Terms—Adversarial attacks, Adversarial robustness,
CARLA simulator, Convolutional neural networks, Deep learning

I. INTRODUCTION

Deep neural networks (DNNs) are key enablers for imple-
menting functions in systems that operate in complex and
unpredictable environments (self-driving cars, smart traffic
systems, smart manufacturing, etc.) [1]. However, DNNs are
in principle vulnerable to adversarial examples, i.e., minimal
(and usually imperceptible) perturbations applied to their input
that can lead to false predictions.

Formally we can define an adversarial example Xadv based
on the benign data input X , whose label is l when passed
through a model f . Xadv is constructed by applying some
perturbation to X , as to fool the model f into labeling the
data Xadv as ladv rather than l, where ladv ̸= l. Essentially,
for some distance metric || . . . ||p (for example L1 or L2) Xadv

can be found as in (1) [2].

min
Xadv

||X −Xadv||p, such that

f(X) = l, f(Xadv) = ladv, l ̸= ladv
(1)

Adversarial examples can be created against all types of
machine learning models (e.g., Decision Trees, Support Vector
Machine (SVM)), but the real emphasis has been given to
neural networks as they expose top performance in various
domains including computer vision (e.g., image classification,
object detection) and natural language processing.

Fig. 1. Compositional Simulation Framework for adversarial attacks analysis

In this paper, we have used a compositional simulation
interconnect fabric known as Veloce System Interconnect
(VSI) [3], [4] as shown in Fig. 1. VSI functions as an
intermediary layer, facilitating the linking of diverse tools and
models. It enables the incorporation of models and components
developed using a range of technologies, as well as the mixing
of continuous and discrete modeling methods for physical
components. We utilized this interconnect fabric to connect
our machine learning (ML)/artificial intelligence (AI) model
for perception with the Car Learning to Act (CARLA) [5]
open-source scenario simulator and the complete EGO Vehicle
Dynamics of the car exported as a co-simulation Functional-
Mock-up Unit (FMU) [6]. The interconnect fabric provided
gateways to connect these tools and models as remote clients
over a backplane server.

We aim to use the assembled co-simulation framework to
demonstrate the dangers of adversarial samples by implement-
ing two adversarial attacks, which are Fast Gradient Sign
Method (FGSM) [7] and Iterative Fast Gradient Sign Method
(IT-FGSM) [8] on RGB camera sensor images and show how
these attacks can force a You Only Look Once X (YOLOX)
speed sign detector DNN model [9] to misidentify speed limit
signs. In order to defend against these attacks, we implemented
a defense method known as a “High-Level Guided Denoiser”
(HGD) [10] in order to extract the adversarial noise from ad-

mailto:mostafaXlotfy@gmail.com
mailto:mazenghaleb@outlook.com
mailto:tasneem.awaad.ext@siemens.com
mailto:tasneem.awaad@eng.asu.edu.eg
mailto:ahmad.al-ganzouri@siemens.com
mailto:mohamed.abd_el_salam_ahmed@siemens.com
mailto:watheq@engr.uvic.ca

versarial examples and send a denoised image to the detector,
which allowed us to improve the detector’s performance when
subjected to adversarial attacks.

Our contribution is introducing a novel compositional sim-
ulation framework for online adversarial attacks analysis and
defense mechanisms testing, which combines scenario sim-
ulation, vehicle dynamics, and ML/AI models (AI Agents).
The framework features a visual inspection of the effect of
adversarial attacks and defenses, in order to be able to tell
at a glance if a given adversarial defense is successful at
eliminating the dangers posed by an attack.

II. RELATED WORK

Goodfellow et al. introduced a new family of fast methods
for the generation of adversarial samples based on gradients.
In their work, they introduced FGSM and used it to generate
adversarial attacks, demonstrated it on several models and
datasets, and finally used adversarial training to defend against
this attack method [7].

Kurakin et al. introduced IT-FGSM, which is based on
reapplying FGSM to the output adversarial sample multiple
times. In their work, they used adversarial attacks including
IT-FGSM on larger models trained on the ImageNet dataset
[8].

Liao et al. introduced the concept of utilizing an HGD
in order to defend against adversarial attacks. In their work,
they suggested the use of a high-level representation of the
data to remove adversarial noise from an adversarial sample.
Furthermore, they proposed the use of a U-Network (U-Net)
architecture, a convolutional neural network (CNN) whose
layers are in a U-shape, as the denoiser [10].

The previous papers illustrated an offline analysis of these
methods. We aim to provide an interactive real-time framework
for the analysis of different attacks and defenses as we will
demonstrate on the three previous methods. Furthermore, we
provide a method for training an HGD model using the
features extracted from a Feature Pyramid Network (FPN)
rather than the method using simpler features illustrated in
[10].

III. METHODOLOGY

This section details the methodology we followed in order
to implement this framework and test it using different adver-
sarial attacks and a defense method.

A. Synthetic Dataset Generation

We have used CARLA with different maps, and weather
conditions to generate a dataset containing the speed limit
signs with annotations (1992 images). Furthermore, a subset
of The Tsinghua-Tencent 100K [11] and German Traffic Sign
Detection Benchmark [12] datasets containing speed limit traf-
fic signs were used to create a new dataset for this study, which
is a dataset that contains only raw/benign images and is used
to train our detector model. For the defense, another dataset,
that contains malicious and benign images, was generated by
applying FGSM to the previously mentioned benign datasets

Fig. 2. Simplified architecture of YOLOX

using different values of ϵ, where ϵ is a small value defined
by the user to control the amount of noise introduced in the
adversarial example as shown in (2).

The training of the YOLOX detector was performed on
Kaggle [16] and Microsoft Azure [15]. The PyTorch [13]
framework was used for the training process. The training for
the HGD was carried out on a GPU-enabled machine using
an RTX graphics card with CUDA. The PyTorch framework
was used for building the model and the custom training loop.

B. YOLOX Detector

To demonstrate the adversarial attacks and defenses the
YOLOX-Small architecture was chosen. Subsequently, a
YOLOX-Small model was trained using the previously men-
tioned datasets on the detection of speed limit traffic signs (the
labels used correspond to 15, 20, 30, 40, 50, 60, 70, 80, 100,
and 120 speed signs). The YOLOX detector utilizes Darknet53
as its feature extractor, Darknet53 acts as an FPN giving 3 sets
of feature maps labeled P3, P4, and P5 as shown in Fig. 2,
these will be used in the defense mechanism as a high-level
representation of each image [9].

C. Adversarial Attacks

For the purposes of this study, two attacks were used to
evaluate the adversarial robustness of deep neural networks.
These are FGSM, and IT-FGSM.

FGSM: This attack method aims to modify an input to ob-
tain an adversarial example, so it maximizes the loss function
when a model tries to process X . This can be represented by
(2), where X is the input to the model, Xadv is the adversarial
example, f is the model, l is the actual target label, L is the
loss function, and ϵ is a small value chosen by the user.

Xadv = X − ϵ ∗ ∂L(f(x), l)

∂X
(2)

IT-FGSM: It is a modified version of FGSM that takes the
obtained adversarial example and repeats the same process
with the adversarial example as an input to obtain a stronger
example that gives a higher loss value.

FGSM and IT-FGSM require the actual target labels as-
sociated with the input image, which are not available at
runtime. To solve this problem, a “target generator” function
was implemented to obtain an approximation of labels that
will be used to calculate the loss function of the model. The

Fig. 3. Generation of an adversarial sample using FGSM at run-time. The
target generator was introduced to solve the problem of lack of labels at run-
time.

Fig. 4. Generation of an adversarial sample using IT-FGSM at run-time. The
target generator was introduced to solve the problem of lack of labels at run-
time.
process of obtaining the loss at run time as shown in Figs. 3
and 4 goes as follows:

• The image goes through the model to obtain the predicted
labels.

• The target generator sets the generated labels based on
the predicted labels, which pass a threshold of 0.5.

• The loss associated with the bounding boxes is set to 0
and the other losses are calculated using Binary Cross
Entropy Loss.

D. Defense Mechanism

We chose to utilize a high-level guided denoising network
[10] as the defense mechanism for this study. Specifically, a
denoising U-Net architecture using dense blocks [14] was used
to remove the adversarial noise added by the FGSM and IT-
FGSM attacks.

To train this network, a new dataset of adversarial samples
was created by applying the FGSM attack to each image in
the dataset using the ϵ values0, 1, 2, 3, 4, and 5. The denoising
network was trained to find the adversarial noise found in
an adversarial sample and output that noise. The obtained
noise can be subtracted from the adversarial sample to obtain
a “cleaned” version, which is fed to the speed limit traffic
sign detector as shown in Fig. 5. At first, we attempted to
use the U-Net architecture [10] shown in Fig. 6, however,
it became obvious that training that network was infeasible
with the YOLOX model and the size of the input images;
due to memory and processing constraints. This prompted
us to implement improvements to both the architecture and
the training process. The first of these improvements was the
introduction of the width parameter, which effectively reduced
the number of filters in each convolutional layer, thus reducing
memory consumption. Secondly, the architecture was changed

Fig. 5. The denoising process

from the one shown in Fig. 6, whose building blocks can
be found in Figs. 7 and 9, to a Dense block [14] based U-
Net architecture shown in Fig. 8. The building blocks for
this architecture can be found in Figs. 9 to 11. Further-
more, to provide clarity regarding some of the terms used
in our approach, it’s worth noting that “Batch Normalization
(BN)” stabilizes and accelerates neural network training by
normalizing each layer’s outputs to have a mean of zero and
a variance of one. This normalization helps maintain stable
gradients during training. “Rectified Linear Unit (ReLU)” is an
activation function employed in neural networks, introducing
non-linearity by outputting the input if it’s positive, and zero
otherwise. “Convolution Layer (Conv)” is a mathematical
operation in CNNs that employs a small filter or kernel to
slide over the input data, producing a feature map that aids in
feature detection. Finally, “Dropout2D” serves as a regulariza-
tion technique designed specifically for convolutional neural
networks, randomly setting a fraction of the feature maps
in a layer to zero during training to prevent overfitting. By
incorporating these techniques and optimizations, we aimed
to make our model more efficient and capable of handling
the challenges posed by the YOLOX model and large input
images.

The main advantage of dense blocks is that each dense
layer adds a fixed number of channels given an input with any
number of channels and this reduces the number of operations
performed by the model during training and inference time.
The other advantage is that between each dense layer and
all following dense layers within a dense block there exist
skip connections, which allows for a better gradient when
backpropagating and enables faster training. We added a stem
to the network to aggressively downsample the image before
any processing occurs to alleviate the memory problem. This
downsampling is met with an opposite upsampling at the end
of the network. Finally, we added gradient accumulation to
reduce the memory and processing problems.

In the first architecture, the number of channels is controlled
by a user-defined hyperparameter called “width”, which is
multiplied by the number of channels produced by each
block in the network. For example, if the width = 1.0 then
the number of channels produced by each block will be
the same as in Fig. 6 and if width = 0.5 the number of
channels will be halved. The number of channels in the second
architecture is similarly controlled by the “width” parameter,
in addition to the parameters “bottleneck size (bn size)” and

Fig. 6. U-Net denoiser architecture

Fig. 7. U-Net denoiser building blocks

“growth rate”. The bottleneck effect is a property of CNNs
whereby by utilizing bottleneck layers the dimensions of the
input feature maps are reduced, this is done in an effort to
reduce the computational and memory requirements while
retaining essential features from the input data. It allows
the network to capture high-level abstractions by gradually
reducing the spatial dimensions before expanding them in
subsequent layers. The “growth rate” determines the number
of channels produced by each dense layer inside the dense
block; for example, if growth rate = 32 then each dense layer
will produce an additional 32 channels from the input. This
allows for a linear growth rate in the number of computations
as we go deeper into the model rather than the exponential
rate of growth present in the first architecture. The bn size
and growth rate control the number of channels produced by
the bottleneck layer inside the dense layer. The number of
channels is equal to growth rate ∗ bn size (i.e., it controls
the intensity of the bottleneck effect done by the bottleneck
layer).

The training of an HGD network, as shown in Fig. 12,
requires a custom loss function. The loss is dependent on the
concept of finding a high-level representation of the data and
penalizing the model if the image created by removing the
noise (i.e., the denoised image) results in a high-level repre-
sentation that is far from the high-level representation of the

Fig. 8. Dense Block based U-Net denoiser architecture. DB2: Dense Block
2, and DB3: Dense Block 3.

Fig. 9. Fuse layer

Fig. 10. Dense block based U-Net denoiser architecture building blocks. The
transition layer is found between each two dense blocks to match the desired
dimensions and channels of the next dense block.

Fig. 11. Dense layer

benign image according to some distance metric. In essence,
to utilize this denoiser we need to find a representation of the
data, H , and a denoising network, D, such that

||H(D(Xadv)−H(X)||p ≃ 0. (3)

Since we are using the YOLOX-Small architecture as a
detector, we utilized the P3, P4, and P5 features shown in
Fig. 2 from the YOLOX model as our representation of the
data. We pass the benign image and denoised image to the
detector model, which gives us a pair of P3, P4, and P5
features, which are used in the loss function as detailed in
(6), (7). Additionally, we added two regularization terms to
the loss. One of which is to penalize the model for outputting
a denoised image, whose pixel values are greater than 255
or smaller than 0. The second regularization term is used to
penalize the model for outputting noise values that are greater
than 255 or smaller than−255. Both these regularization terms
are used in order to ensure that the denoised image’s pixel
values are within the range of 0 to 255 that is normally used
for pixel values. Both these terms can be found in (4), (5).

As mentioned previously, during training both the benign
and denoised images are passed to the detector in order
to obtain their P3, P4, and P5 features, the previously
mentioned loss can then be calculated and the denoiser can
be improved by backpropagation through the loss (i.e., by
reducing the distance between the high-level representation
of the denoised image and the clean image). This essentially
turns the loss function into the form found in (4) to (7).

Lnoise =
1

N
∗

 i<640∗640∗3∑
i=0,yi<−255

yi +

i<640∗640∗3∑
i=0,yi>255

yi

2

, (4)

Ldenoised =
1

N
∗

i<640∗640∗3∑
i=0,xi<0

xi +

i<640∗640∗3∑
i=0,xi>255

xi

2

, (5)

Lfeatures =
1

N
∗ (||P3benign − P3denoised||1+

||P4benign − P4denoised||1+
||P5benign − P5denoised||1+),

(6)

Ltotal = Lfeatures + λ ∗ (Ldenoised + Lnoise), (7)

where yi is the ith pixel in noise, xi is the ith pixel in the
denoised image, P3, P4, and P5 are the high-level represen-
tations of the image obtained from the feature extractor, λ is
the regularization factor, || . . . ||1 is the L1 norm, and N is the
number of images in a training batch.

E. CARLA Environment

In order to simulate the model, attack, and defense ap-
proaches. CARLA open-source simulator for autonomous
driving research was used to provide a virtual real-time en-
vironment in order to allow us to test the adversarial attack
and defense methods visually.

Fig. 12. The training process of the denoiser

Fig. 13. The normal scenario

The CARLA environment interacts with the detection model
in different scenarios, where each scenario is shown in Figs. 13
to 16. In the normal scenario, as demonstrated in Fig. 13, the
CARLA environment sends an image to the detection model,
which in turn returns the detections found in the sent image.

To simulate the attack scenario, as demonstrated in Fig. 14,
we assume the existence of an attacker, who is capable of
hijacking the image sent to the detector, where they apply
some attack method and forward the perturbed image to the
detection model whereby the detector will be fooled into
returning incorrect detections to the CARLA environment.

In the defense scenario, as demonstrated in Fig. 15, the

Fig. 14. The attack scenario

Fig. 15. The defense scenario

Fig. 16. The defended attack scenario

CARLA environment will send the image to what it perceives
as the detector but in fact, it would be sending it to the
denoiser, which would remove any present adversarial noise
(in this case no adversarial noise exists), and then be passed
to the detector, which in turn returns the detections to the
CARLA environment.

Finally, when both the attack and defense are engaged, as
demonstrated in Fig. 16, the attacker would still hijack the
image, apply an attack method on it, and forward it to what
they perceive to be the detector, the denoiser, in this case, will
remove the adversarial noise added by the attacker allowing
the detector to carry out the detection and return it to the
CARLA environment.

We have implemented multiple features including the ability
to run the detector, attack, and defense simultaneously, which
gives us the result of the detection before applying the attack
and defense, detection after the attack, and detection after
the defense on the attack chosen, if any. Additionally, we
have implemented another way (decoupled mode) to run the
framework, where we can choose a specific scenario and get
the direct output of it, for example, getting only defense
detection without getting the detection after the attack or
normal detection. This allows using the simultaneous mode
to carry out an inspection of the results to visualize in real-
time what happens under normal conditions, how the attack
changes the detection, and how well the defense performs
to try to remove the effect of the attack and return to the
normal scenario. On the other hand, the decoupled mode
allows us to simulate reality better by having only one scenario
running and therefore has better computation time. We have
also implemented an auto speed-limit mode, which limits the
vehicle speed according to the label of the sign detected. The

vehicle will follow the speed detected in the highest priority
case (The priorities for the scenarios from highest to lowest
are as follows, defense, attack, then detection) if it is in
the simultaneous mode, otherwise, it will follow the speed
detected in the scenario of the decoupled mode. The scenario
is computed by receiving an image of the view above the
camera with certain limits to provide a view of the street as
if the camera is centered on top of the vehicle. Using that
image, depending on the scenario, the required computations
are made.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
implemented attacks and defense. For this purpose, we used
two metrics namely, precision and recall. For both metrics,
we tested on the unseen portion of the dataset. We assumed
that the detections generated from the YOLOX detector are
the ground truth for all future calculations in order to better
measure the performance of the attacks and defense without
being concerned with the results from the detector (i.e., by as-
suming the detections from YOLOX to be the ground truth, we
eliminate the performance of the detector from the calculation
of the performance of the attacks and defense). Both metrics
used two threshold values, the confidence threshold, and
the Intersection over Union (IoU) threshold. The confidence
threshold is used to reject any low-confidence detections, while
the IoU threshold is used to identify if two bounding boxes are
the same (i.e., when comparing a bounding box to the ground
truth bounding box if their IoU score is lower than the IoU
threshold, we assumed that this is not a true positive (TP) even
if they have the same label).

For precision, we generated the detections using the
YOLOX detector (either on attacked data, denoised benign
data, or denoised adversarial data), and then we calculated
of all the detections on the test data how many correspond
with the bounding boxes found in the ground truth detections.
Subsequently, we got a percentage of how many of the test
bounding boxes have a corresponding bounding box in the
ground truth detections out of all test bounding boxes, this
percentage is the value of precision.

For recall, we use the same generated detections, and for
each bounding box in the ground truth detections, we checked
whether the generated detections have a bounding box that
corresponds with the ground truth bounding box. A formal
description of the metrics used can be found in (8).

df = f(X)

ds = f(s(X))

precision =
TP

count(ds)

recall =
TP

count(df)

where TP : label(ds) = label(df), IoU(df , ds) ≥ 0.75,

confidence(ds) ≥ 0.8,
(8)

TABLE I
THE PRECISION AND RECALL RESULTS OF THE SYSTEM BEFORE AND

AFTER APPLYING ATTACKS AND DEFENSE MECHANISM ON THE
REAL-WORLD DATASET

Category Precision Recall

Denoised Benign 0.9580 0.9763

FGSM 0.3416 0.1899

Denoised FGSM 0.7392 0.7168

IT-FGSM 0.0030 0.0839

Denoised IT-FGSM 0.7067 0.6994

TABLE II
THE PRECISION AND RECALL RESULTS OF THE SYSTEM BEFORE AND

AFTER APPLYING ATTACKS AND DEFENSE MECHANISM ON THE CARLA
DATASET

Category Precision Recall

Denoised Benign 1.0000 1.0000

FGSM 0.7317 0.8604

Denoised FGSM 0.8857 0.8994

IT-FGSM 0.0253 0.4123

Denoised IT-FGSM 0.1881 0.7695

where f is the detection model, df is the detections made
by the model on the benign data (assumed to be the ground
truth), s is the scenario that is running (i.e., attack or defense
or any combination of them), and ds is detections made by
the model after applying the scenario.

A. Precision and Recall Metrics

1) Results on Real-World Dataset: This section demon-
strates the results of the attacks and defense of precision and
recall. For this section, the detector and denoisers used were
the ones trained on the real-world dataset (the test dataset
consisted of 803 images).

From Table I, it can be noticed that the detector model was
not robust to adversarial attacks as both the FGSM and IT-
FGSM attacks are able to significantly reduce the precision
and recall of the model. Additionally, it can be observed that
the defense is able to remove the adversarial noise from the
attacks the model was trained on (seen attacks) like FGSM.
Also, it is able to remove attacks that weren’t used in the
training (unseen attacks) like IT-FGSM successfully (i.e., the
defense is able to generalize on unseen attacks). This does
not come at a significant cost for the precision and recall for
denoised benign detections.

2) Results on CARLA Dataset: This section demonstrates
the results of the attacks and defense of precision and recall.
For this section, the detector and denoiser used are the ones
trained on the CARLA simulator dataset (the test dataset
consisted of 304 images). As shown in Table II, the precision
and recall results of the system before and after applying
attacks and defense mechanism on the CARLA dataset.

3) Results on the Mixed Dataset: This section demonstrates
the results of the attacks and defense of precision and recall.

TABLE III
THE PRECISION AND RECALL RESULTS OF THE SYSTEM BEFORE AND

AFTER APPLYING ATTACKS AND DEFENSE MECHANISM ON THE MIXED
DATASET

Category Precision Recall

Denoised Benign 0.9874 0.9924

FGSM 0.5619 0.5065

Denoised FGSM 0.8785 0.8739

IT-FGSM 0.0114 0.2293

Denoised IT-FGSM 0.8624 0.8609

TABLE IV
THE HYPERPARAMETERS OF EACH OF THE DENOISER MODELS

Model width bn size growth rate

Model 1
(Real-World Data)

1.0 4 32

Model 2
(CARLA Data)

1.0 4 32

Model 3
(Real-World

and CARLA Data)

0.5 2 16

The detector and denoiser are trained on a mixed dataset,
meaning both CARLA and real-world datasets (mixed test
dataset consisted of 1107 images). Additionally, this denoiser
is computationally faster as it uses smaller values for width,
bn size, and growth rate. As shown in Table III, the denoiser
is capable of providing satisfactory results for both seen and
unseen attacks, with very little compromise in the precision
and recall of denoised benign data. Moreover, the computa-
tional speed of this detector is enhanced by utilizing reduced
values for width, bn size, and growth rate.

B. Timing for the Models

Each denoiser’s timing is different depending on the values
used for width, bn size, and growth rate. A detailed descrip-
tion of the values used for each denoiser can be found in
Table IV. Furthermore, the timing that is found within CARLA
is highly dependent on the map from which the timing was
retrieved, with more graphically intensive maps requiring more
processing on the GPU thus limiting the processing power that
is available to the denoiser. All the presented timing results
were recorded on a system fitted with Ryzen 5 3600X CPU
and an NVIDIA RTX 2060 Super GPU.

As shown in Table V, there is a very minute difference
between detection times on all three of the models, this is
due to the same architecture being used for all three datasets.
Moreover, the first two denoisers add a significant computa-
tional time overhead in order to denoise the images before
they are passed to the detector. This overhead is significantly
reduced in the third model as it uses a smaller value of width,
bn size, and growth rate (i.e., the model is easier to compute).
This overhead could be further reduced by further reducing the
values of width, bn size, and growth rate, however, this may
come at the cost of denoising performance.

TABLE V
THE TIMING RESULTS FOR THREE OF THE DENOISER AND DETECTOR

MODELS

Model Undefended Detection
Timing

Defense
and Detection

Timing

Model 1
(Real-World Data)

0.0441s 0.1460s

Model 2
(CARLA Data)

0.0432s 0.1498s

Model 3
(Real-World

and CARLA Data)

0.0435s 0.0937s

Fig. 17. Results from CARLA from left to right under normal conditions,
under FGSM attack, and finally under both defense and attack

C. Visual Results Inspection

To demonstrate the behavior of the detector when it is under
normal conditions, attack conditions, and when the defense is
applied to remove adversarial noise introduced by the attack,
we used our framework to simultaneously run all three cases
in order to enable real-time comparison of the performance
of the detector under these conditions and to demonstrate the
results visually. In Fig. 17, we demonstrate the visual results
for the FGSM attack, while Fig. 18 demonstrates the visual
results for the IT-FGSM attack. It can be observed in the IT-
FGSM case that the defense was able to remove the multiple
erroneous bounding boxes introduced by the attack.

V. CONCLUSION

In this study, we have demonstrated a compositional simula-
tion framework. That framework was introduced to perform an
online verification of the enhanced defense mechanism added
to guarantee the robustness of YOLOX against FGSM and
IT-FGSM attacks, which required the introduction of a target
generator to solve the problem of lack of labels in order
to generate the attacks at runtime. Furthermore, we verified
the effectiveness of our defended YOLOX model on three
different datasets. In addition, we generated and annotated a

Fig. 18. Results from CARLA from left to right under normal conditions,
under IT-FGSM attack, and finally under both defense and attack

synthetic dataset that can be used for the detection task of
speed limit signs found within the CARLA simulator. Finally,
we introduced a novel method of utilizing features from an
FPN in order to train an HGD model to remove adversarial
noise from adversarial samples.

REFERENCES

[1] Balasubramaniam, A., & Pasricha, S. (2022, January). Object Detection
in Autonomous Vehicles: Status and Open Challenges. arXiv preprint
arXiv:2201.07706. Retrieved from https://doi.org/10.48550/arXiv.2201.
07706

[2] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., & Fergus, R. (2013). Intriguing properties of neural net-
works. arXiv preprint arXiv:1312.6199. Retrieved from https://doi.org/
10.48550/arXiv.1312.6199

[3] Siemens EDA. (2023). PAVE360-VSI: Veloce System Interconnect®.
Retrieved from https://eda.sw.siemens.com/en-US/ic/veloce/

[4] Temperekidis, A., Kekatos, N., Katsaros, P., He, W., Bensalem, S.,
AbdElSabour, H., AbdElSalam, M., & Salem, A. (2022, October).
Towards a Digital Twin Architecture with Formal Analysis Capabilities
for Learning-Enabled Autonomous Systems. In International Conference
on Modelling and Simulation for Autonomous Systems (pp. 163-181).
Cham: Springer International Publishing. Retrieved from https://doi.org/
10.1007/978-3-031-31268-7 10

[5] CARLA Open-source simulator for autonomous driving research (Ver-
sion 0.9.12).(2021). Retrieved from https://carla.org/

[6] Siemens PLM Software. (2023). Simcenter Amesim. Retrieved from
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/
amesim/

[7] Goodfellow, I., Shlens, J., & Szegedy, C. (2015). Explaining and
harnessing adversarial examples. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR 2015 - Conference
Track) (pp. 1–11). Retrieved from https://doi.org/10.48550/arXiv.1412.
6572

[8] Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236. Retrieved from https:
//doi.org/10.48550/arXiv.1611.01236

[9] Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). Yolox: Exceeding
YOLO series in 2021. arXiv preprint arXiv:2107.08430. Retrieved from
https://doi.org/10.48550/arXiv.2107.08430

[10] Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., & Zhu, J. (2018). De-
fense against adversarial attacks using high-level representation guided
denoiser. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1778-1787). Retrieved from https://doi.org/10.
1109/cvpr.2018.00191

[11] Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., & Hu, S. (2016).
Traffic-sign detection and classification in the wild. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp.
2110-2118). Retrieved from https://doi.org/10.1109/cvpr.2016.232

[12] Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., & Igel, C.
(2013, August). Detection of traffic signs in real-world images: The
German Traffic Sign Detection Benchmark. In The 2013 international
joint conference on neural networks (IJCNN) (pp. 1-8). Retrieved from
https://doi.org/10.1109/ijcnn.2013.6706807

[13] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32 (pp. 8024–8035).
Curran Associates, Inc. Retrieved from http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[14] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017).
Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 4700-4708).
Retrieved from https://doi.org/10.1109/cvpr.2017.243

[15] Microsoft. (2023). Microsoft Azure. Retrieved from https://azure.
microsoft.com/

[16] Kaggle. (2023). Kaggle. Retrieved from https://www.kaggle.com/

https://doi.org/10.48550/arXiv.2201.07706
https://doi.org/10.48550/arXiv.2201.07706
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://eda.sw.siemens.com/en-US/ic/veloce/
https://doi.org/10.1007/978-3-031-31268-7_10
https://doi.org/10.1007/978-3-031-31268-7_10
https://carla.org/
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1611.01236
https://doi.org/10.48550/arXiv.1611.01236
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.1109/cvpr.2018.00191
https://doi.org/10.1109/cvpr.2018.00191
https://doi.org/10.1109/cvpr.2016.232
https://doi.org/10.1109/ijcnn.2013.6706807
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/cvpr.2017.243
https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.kaggle.com/

	Introduction
	Related Work
	Methodology
	Synthetic Dataset Generation
	YOLOX Detector
	Adversarial Attacks
	Defense Mechanism
	CARLA Environment

	Experimental Results
	Precision and Recall Metrics
	Results on Real-World Dataset
	Results on CARLA Dataset
	Results on the Mixed Dataset

	Timing for the Models
	Visual Results Inspection

	Conclusion
	References

