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Abstract—With the increasing complexity of overall vehicle architecture due to the emergence of autonomous
driving and other ADAS technologies, virtual prototyping is gaining popularity in the automotive industry. Modern
cars consist of numerous ECUs that run millions of lines of software code and are interconnected to form the vehicle's
electronic system, which is responsible for critical functions. Ensuring the safety and security of such a complex
machine is crucial for roadworthiness certification and customer satisfaction. To comprehensively verify these
systems, expensive hardware testbenches are traditionally used, but they are difficult to scale. To address this
scalability issue, virtual platforms or virtual ECUs are used as full system simulators. They enable automotive
companies to verify the correct functionality of their unmodified target software even before the first hardware
prototypes are available, following a "shift-left" approach. In this study, we present a novel framework for
constructing and deploying virtual ECUs using the popular QEMU system simulator and standard SystemC
TLM-2.0. Our approach combines existing models from the QEMU and SystemC TLM-2.0 domain into one fast
virtual ECU. Besides offering high performance, our simulation environment also allows easy integration into full
vehicle simulations through standard vehicle interconnects such as Ethernet and CAN. In our case study, we
demonstrate the effectiveness of this approach on a virtual ECU model of a popular automotive gateway ECU. By
adopting this framework, automotive companies can efficiently verify their electronic systems, reduce costs, and
improve time-to-market.
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I. INTRODUCTION

Moore's Law has led to an increase in the complexity of electronic systems over the last few decades. Not only
has hardware complexity risen, but software complexity has also seen a similar, if not stronger, increase. Even
small embedded devices now run software stacks consisting of millions of lines of code, driving the need for
advanced verification techniques to ensure correct, safe, and secure operation of these systems.

The automotive market has been heavily impacted by these trends, with modern cars containing numerous
Electronic Control Units (ECUs) connected in complex networks using technologies such as Controller Area
Network (CAN) or Ethernet. The software stacks in these cars can surpass 100 million lines of code due to
advancements in the ADAS field, which further increases the need for rigorous verification. Safety and security
are also paramount in the automotive industry, as they are necessary for roadworthiness certification and the end
user.

To address these challenges, this work proposes a novel framework for constructing virtual ECUs based on
QEMU [1], a fast open-source system simulator and the open-source Virtual Components Modeling Library
(VCML), which is based on SystemC TLM-2.0. QEMU is used because its Dynamic Binary Translation (DBT)
based CPU models allow for rapid software execution. However, QEMU’s monolithic architecture poses
challenges,when it comes to modeling systems consisting of several CPU clusters of different architectures. To
address this limitation VCML is integrated with QEMU enabling the modeling of these complex
System-on-a-Chip (SoC) architectures, utilizing flexible combinations of models from both worlds without
limitations. Additionally, backends for CAN and Ethernet networks are provided through VCML for full vehicle
simulation.
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Overall, this framework provides a solution to the increasing complexity of hardware and software in electronic
systems and addresses the limitations of traditional SystemC simulations. It offers a flexible infrastructure for
integrating different HW models, allowing for efficient and effective verification of software for modern
automotive systems.

II. RELATED WORK

QEMU’s performance and broad support especially for the ARM CPU architecture has attracted the interest of
the simulation community for quite a while. In the past, it has been integrated into SystemC environments for
different use cases. Delbergue et al. present an integration used to simulate ARM systems in [2]. In their setup,
SystemC serves as the source of simulation time. They analyze the overhead of SystemC QEMU
synchronization and compare it to a version in which SystemC models were integrated into QEMU and
conclude that the overhead is comparable. Overall the integration overhead is about 10%, when executing the
Dhrystone benchmark. For Linux boot the overhead is negligible. A similar approach is shown in [5].

The authors of [3] discuss a QEMU SystemC integration focused on integrating QEMU CPU models. For this
they use the Unicorn emulator as a starting point [4], which provides a mechanism for building QEMU as a
library and interfaces for accessing QEMU CPU models. A benchmark VP is constructed and performance is
measured for the CoreMark benchmark. A comparison is made to the QEMU SystemC integration from [2]. For
small SystemC TLM quanta, a significant performance improvement is demonstrated. In [6] the author has
presented simulation speed gain using QEMU models of an automotive device model.

III. VIRTUAL ECU ARCHITECTURE

Figure 1: Virtual ECU Architecture Overview

The architecture of the virtual ECU framework is presented with a simplified example in Figure 1. It can be
observed that the virtual ECU consists of two domains: the QEMU domain and the TLM domain. Models from
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the QEMU domain are integrated using standard SystemC TLM-2.0 interfaces, like other models from the TLM
domain. The framework allows use of both QEMU CPU as well as QEMU peripheral models. No restrictions
are placed on the models in the TLM domain either, except that the use of standard SystemC TLM-2.0 interfaces
is required. TLM models may be based on VCML or any other compatible library.

To enable communication with other simulators through the simulation host, the framework supports network
bridges for transferring data bidirectionally between host and virtual ECU. As of now, CAN and Ethernet
networks are supported. CAN traffic is handled by the Linux SocketCAN stack on the simulation host, allowing
to connect the virtual ECU to other CAN simulators or even physical CAN hardware. Ethernet traffic is handled
by Linux TAP interfaces for maximum flexibility, or by the SLIRP user space networking stack for easier use
without requiring elevated privileges for interface creation.

The architecture of the framework combines advantages from the QEMU domain with the advantages of
SystemC TLM-2.0. The main advantage of using SystemC TLM-2.0 standard interfaces for all models is that
integration into existing simulation environments is simplified and the reuse of existing models from either the
QEMU or the TLM world is supported. The advantage of using the fast processor models from QEMU is that
high simulation performance can be achieved. Target software debugging is supported through QEMU’s gdb
implementation allowing the user to debug the virtual ECU just like its physical counterpart. Furthermore, the
framework leaves the user with maximum flexibility in the SystemC/QEMU partitioning as both domains are
supported equally well.

IV. RESULTS

This chapter presents the experimental evaluation of a virtual platform simulator (VP) developed for a specific
Renesas device. The VP was tested in common scenarios, including executing bare metal applications and Linux
boot. These use cases align with the customer's needs, and the evaluation aimed to ensure the VP's reliability
and effectiveness. The results provide insights into its performance and suitability as a virtualization solution.

The performance evaluation began by testing the VP's ability to simulate Linux boot, which is the most common
use case. The performance measurement involved timing the simulator's simulation process from power-off until
reaching the Linux command line. It is important to note that the VP simulated a custom Linux kernel
specifically built for the Rensas device, ensuring a realistic emulation of the target system.

In this evaluation, two modes of operation were tested: icount and mttcg, which correspond to the operation
modes of the underlying QEMU CPU model. The icount mode relies on instruction counting to determine the
execution progress, while the mttcg mode employs a multi-threaded approach for faster simulation. Both modes
were evaluated to assess their impact on the VP's performance and determine the most suitable mode for
achieving optimal simulation results.
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Figure 1: Runtime comparison of Linux boot for mttcg and icount mode

In the icount mode, the average boot time recorded was 6.3 seconds, while in the mttcg mode, it reduced
significantly to only 2.8 seconds. The improved speed of the mttcg mode can be attributed to its ability to
parallelize the workload across the four ARM processors in the system. However, it is important to note that the
mttcg mode is nondeterministic, meaning that the simulation results may vary across different runs. On the other
hand, the icount mode may be slower, but it consistently produces reproducible results in terms of timing
simulation. The choice between the two modes depends on the specific customer requirements of the simulation,
taking into consideration the need for speed or deterministic timing.

Next, we conducted measurements using bare metal benchmark software to assess single-core performance,
utilizing only one core. The Dhrystone benchmark was executed with 10 million iterations, and Coremark was
executed with 100,000 iterations. The results of these benchmark tests are visually represented in the bar
diagram below:

Figure 2: Comparison results of simulation speed of CPU benchmarks on QEMU and QEMU+SystemC
platform

The bar diagram provides a clear comparison of the performance of the VP in terms of the Dhrystone and
Coremark benchmarks, highlighting the capabilities and efficiency of the simulated system under different
workloads. The results show simulation speed factors on the QEMU_SC platform and QEMU_CPU_only of
0.83x and 0.94x for Dhyrstone and Coremark benchmarks respectively. These results show that the SoC
platform, including QEMU CPU and other SystemC IP components, is maintaining the advantage of simulation
speed of QEMU models.

These results provide insights into the processing capabilities and efficiency of the simulated system when
subjected to these specific benchmark workloads.

V. CONCLUSION

In this work a novel framework for virtual ECU construction was introduced based on QEMU, VCML and
SystemC TLM-2.0. The framework was applied to create a model of a state-of-the art gateway ECU. In the
presented case study performance was analyzed for different model execution modes. Overall, the virtual ECU
performs well and is even usable interactively. Furthermore, integrations for full vehicle simulation via CAN
and Ethernet interfaces are made available.
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In the future, the virtual ECU will be extended with additional peripheral models to enable further interfacing
via other industry-standard interfaces. In addition, it will be explored how the debug capabilities of the virtual
ECU can be improved beyond standard GDB integration, e.g. by making an MCD interface available.
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