
Effective Design Verification – Constrained
Random with Python and Cocotb

Deepak Narayan Gadde, Infineon Technologies, Dresden, Germany (deepak.gadde@infineon.com)
Suruchi Kumari, Infineon Technologies, Dresden, Germany (suruchi.kumari@infineon.com)

Aman Kumar, Infineon Technologies, Dresden, Germany (aman.kumar@infineon.com)

Abstract —Being the most widely used language across the world due to its simplicity and with 35
keywords (v3.7), Python attracts both hardware and software engineers. Python-based verification environment
leverages open-source libraries such as cocotb and cocotb-coverage that enables interfacing the tesbenches
with any available simulator and facilitating constrained randomization, coverage respectively. These libraries
significantly ease the development of testbenches and have the potential to reduce the setup cost. The goal of
this paper is to assess the effectiveness of a Python-Cocotb verification setup with design IPs and compare its
features and performance metrics with the current de-facto hardware verification language i.e., SystemVerilog
[1].

Keywords —cocotb; python; constrained random; functional verification; coverage; hardware verification
language

I. INTRODUCTION

With the conclusion of Dennard scaling [2] and the deceleration of Moore’s law [3], the design of System-on-Chip
(SoC) has become increasingly challenging. As the transistor size is shrinking at a remarkable rate, the total count
of transistors in a chip has increased exponentially over the years. This results to more functionality in the same
die area, hence increased design complexity [4]. With such an increase in complexity of designs, the time required
for verification experiences a significant upsurge. In comparison to directed tests, Constrained Random Verification
(CRV) technique improves the productivity gain significantly [5]. This methodology is crucial because it saves time
in achieving coverage closure. The traditional method of using targeted tests to verify specific design elements grows
exponentially with the number of inputs, hence there is a requirement for speeding up CRV [4].

There has been growing trend in the use of Python as high-level and general-purpose programming language.
Renowned for its conciseness and formidable capabilities, it has emerged as a cornerstone for pioneering technologies,
prominently encompassing artificial intelligence, automation, machine learning, General Purpose Interface (GPI), and
networking [6][7]. Additionally, the success of Python is due to (i) a simple and clean syntax, (ii) interpreted and
dynamically typed (iii) object oriented (iv) huge ecosystem, (v) a rich standardized libraries that is conveniently
available, and (vi) very good documentation and help support [8][9].

For the functional verification, Hardware Verification Language (HVL) Verilog was transitioned to SystemVerilog
in order to incorporate numerous powerful programming features, particularly object-oriented programming with
additional capabilities such as constrained random data generation and functional coverage [9]. SystemVerilog, which
is also used as a language construct for industry-utilized verification methodologies like Metric Driven Verification
(MDV) and CRV, is a complex language with a steep learning curve especially for engineers who are new to
hardware verification. It requires very good understanding of digital design concepts and a thorough grasp of
the language syntax and constructs. Developing an efficient and robust testbench in SystemVerilog can be time-
consuming [9]. Figure 1 shows that HVL i.e., SystemVerilog, is the most complicated language in comparison with
other programming languages which has 1315 specification pages and 248 keywords as per IEEE 1800-2012. On
the other hand, Python (v3.7) is a high-level programming language with only 35 keywords and 600 specification
pages with 1750 full standard libraries [10]. While SystemVerilog follows a set format, various Electronic Design
Automation (EDA) tool vendors might incorporate the format differently within their simulation tools. Although it
is widely used, there can be variations in the level of tool support across different vendors [11].

1

200 400 600 800 1,000 1,200 1,400

Python v3.7

C++

Java

C

C#

Ruby

Smalltalk

Erlang

SV IEEE 1800-2009

SV IEEE 1800-2012

600

865

644

540

511

311

303

31

1,285

1,315

35

83

50

32

104

42

6

28

221

248

spec pages
keywords

Fig. 1: Language complexity with respect to number of specification pages and keywords [10]

A recent study conducted by the Wilson research group in 2022 shows that the trend of using python as a HVL
for Application-Specific Integrated Circuit (ASIC) development has been increased and can be seen in Figure 2.

VHDL
Verilo

g
Vera

SystemC

SystemVerilo
g

Specman e
C/C++

Accellera PSS
Python

Others
0

20

40

60

80

D
es

ig
n

Pr
oj

ec
ts

(%
)

2014
2018
2022

Fig. 2: ASIC verification language adoption [1]

In this paper, the main focus is to evaluate the usage of a Python-based verification setup on design IPs and
compare it against the existing state-of-the-art HVL for instance SystemVerilog. The key highlights of the paper are
listed below:

• Comparison of SystemVerilog and Python as HVLs
• Exploration of Python libraries i.e., cocotb (framework enabling functional verification), cocotb-coverage (library

allowing CRV and functional coverage)
• Preparation of testbenches in Python and SystemVerilog for the design IPs. i.e., 32-bit Arithmetic Logic Unit

(ALU), Inter-Integrated Circuit (I2C), and 16-bit Analog-to-Digital Converter (ADC)
• Analysis of results and empirical observations made during the testbench preparation for respective IPs
• Comparison of performance metrics for both verification environments, simulated with various EDA tools

The rest of the paper is organized as follows: Section II introduces functional verification along with various
methodologies and presents related work. Section III explains the building blocks for the Python-Coroutine based

2

cosimulation testbench (Cocotb) verification implementation. Section IV discusses the results and compares for Sys-
temVerilog and Python-Cocotb verification setups. Section V details the empirical observations made implementing
the verification. Lastly, Section VI summarizes the paper and lists further scope of Python-based verification.

II. BACKGROUND

The main goal of functional verification is to test the verification target, thereby guaranteeing accurate and
comprehensive functionality [12]. The present design verification stage utilizes a well- established technique for
larger designs known as simulation- based verification. Such modern methodologies involve a largely automated
procedure encompassing test generation, checking, and coverage collection, combined with instances of manual
involvement [13]. One of the methodology is CRV where stimulus generation, scenarios can be generated in an
automated fashion under the control of a set of rules, or constraints, specified by the user [14]. Another notable
approach rooted in simulation is the Universal Verification Methodology (UVM), which employs Transaction Level
Modeling (TLM) for the creation of testbenches. It is a class library that makes it easy to write configurable and
reusable code [5]. All the technologies discussed uses SystemVerilog as their language construct. In contrast, this
paper discusses simulation-based verification for 3 designs detailed in section III, using Python as HVL and cocotb,
cocotb-coverage libraries.

The authors in paper [15] presents an explanation of the Python-based verification methodology along with
a discussion on code coverage data obtained from verifying a design Intellectual Property (IP) using a Python
testbench. A similar work is done in paper [16], that extends Cocotb to provide constrained randomization and
functional coverage constructs. The paper also motivates to enable the implemented mechanisms to be adopted by
verification engineers, taking advantage of Python syntax and object-oriented approach. Nevertheless, these works
did not discuss feature, performance comparison with respect to the other verification methodologies. PyVSC is a
library supported by Python that has the same functionality as cocotb-coverage library to support randomization
and functional coverage [17]. The work claims that PyVSC will make it easier for SystemVerilog practitioners to
reuse their knowledge of constraints and coverage in Python. The work [18] employs Cocotb to model the Python
testbench for a comparator designed in Verilog and an open-source simulator Icarus Verilog for simulating the
testbench. Additionally, machine learning technique is implemented to optimize design verification. In the paper
[19], the testbench is written in Python to develop a library (VeRLPy) for the verification of digital designs with
reinforcement learning.

The related works elaborated above mostly discusses creating Python testbench using Cocotb, how SystemVerilog
functional coverage constructs are supported by Python library like PyVSC. But none of them examines the
comparison of the verification methodologies or language construct(s) used for the methodologies. In this work,
we try to address the simulator compatibility, feature comparison between HVLs, its performance in terms of run-
time.

III. IMPLEMENTATION

The verification implementation with Python-Cocotb involves three key components: Design Under Test (DUT),
Testbench written in Python, and a Makefile. These building blocks play crucial roles in carrying out the verification
process as discussed below.

A. Design

The DUT in the Python-Cocotb testbench can be designed in any Hardware Description Language (HDL)
i.e., SystemVerilog, Verilog, or VHDL. For this paper, we carefully selected three different designs for thorough
verification. These choices were made based on important factors that enhance the significance of their verification.
A short explanation to the design IPs used in this work is as follows:

1) ALU

The 32-bit ALU, a combinational design written in Verlilog, carries out a range of operations on the input signals
and generates 32-bit output. It supports two arithmetic operations, namely addition and subtraction, and also provides
functionality for six logical operations: NOT, AND, OR, XOR, NAND, and NOR. In Figure 3, (a) depicts the block
diagram of 32-bit ALU where input buses a and b, control bus op, and output bus r are responsible for transmitting
their corresponding signal data. Its computational capabilities finds applications in modern processors.

3

2) I2C

In general, reactive testbenches are particularly useful for protocol like I2C, where the communication is event-
driven and depends on the actions of both the master and the slave devices. For the verification process, the
testbench created in Python-Cocotb acts as Master for the design IP coded in Verilog. In Figure 3, (b) shows the
block diagram of I2C master-slave configuration. A0, A1, A2, and Wp are unidirectional input signals whereas SDA
and SCL are bidirectional in/out pins. SDA transfers addresses and data during input and output operations; while
SCL synchronizes the data exchange to and from the DUT.

3) ADC

It is an analog mixed signal design, implemented in SystemVerilog. Python-Cocotb testbench is set up to evaluate
Cocotb with the design IP performance. In Figure 3, (c) shows that adc is the top level, where real valued from
-10V to 10V are given. $realtobits function has been used to convert analog in to 64-bit analog input, which is
then fed as input to adc core and it produces the 16-bit digital output digital out.

ALU Master
(TB)

SCL

SDA

Slave
(DUT)

b

a

r

op

(a) 32-bit ALU (b) I2C master-slave configuration

A0

A1

A2

Wp

$realtobits

adc_core

(c) 16-bit ADC

adc

analog_in digital_out

= 1-bit i/p

= bus i/p or o/p

Fig. 3: Design(s) under test

B. Python Testbench

The verification setup consists of a top testbench, where Cocotb connects the Python testbench with the simulator.
It also provides the Python library for creating synchronous logic. In this setup, the testbench uses constrained
randomization of signals and bin definitions for analyzing functional coverage. These capabilities are supported by
the cocotb-coverage library.

The basic structure of general Python-Cocotb testbench is explained using ALU testbench in Listing 1. Firstly,
the important required modules are imported, for instance, cocotb, and all the objects from cocotb-coverage module.
Then the tests specified in the testbench is automatically discovered by Cocotb using cocotb.test() decorator1 during
simulation run. The clock is generated succeeded by signals being constrained and randomized. These signals are
sent to DUT and reference model. The coverage sample function is called and finally the outputs from DUT and
reference model are asserted.

1Decorators use @ followed by the decorator name before a function or class declaration. When invoking the decorated function or class, the
decorator runs first, and its output substitutes the original.

4

A single test specified in the ALU testbench is simulated with various number of transactions i.e., 20000, 40000,
and 60000. Similarly, a single test is present in the ADC testbench which is run with 210, 410, and 610 number of
transactions.

A Bus Functional Model (BFM) is a class that sends data using coroutine tasks. It contains coroutines2 that
manipulate signals to communicate to the DUT. Hence, a class-based BFM testbench is created for I2C enhancing
modularity. Figure 4 shows the BFMs (coroutine tasks) included in the I2C testbench (Master) and I2C bus
communicates betweeen testbench and the DUT. The testbench includes 3 tests, namely, byte write followed by
random read, page write succeeded by random read, and page write read sequentially.

1 ## Imp or t r e q u i r e d modules ##
2 i m p o r t c o c o t b
3 . .
4 @cocotb . t e s t () # Automat ic t e s t d i s c o v e r y
5 async def a l u t e s t (dut) :
6 ””” T e s t c o r o u t i n e s t a r t s w i th a h a n d l e t o t h e t h e t o p l e v e l (dut) ”””
7 c o c o t b . s t a r t s o o n (Clock (dut . c lk , 2 0 , u n i t s =” ns ”) . s t a r t ()) # G e n e r a t e c l o c k
8 a = 0 # I n i t i a l i z e t h e s i g n a l s
9 . .

10 f o r i i n r a n g e (1 0 0 0) : # No . o f t r a n s a c t i o n s s p e c i f i e d i n loop c o u n t
11 r e f o u t = a l u r e f (a , b , op) # Send t h e i / p s i g n a l s t o r e f e r e n c e model

and g e t o / p
12 a = random . r a n d i n t (−100 , 100) # Randomize t h e s i g n a l s
13 . .
14 dut . a . v a l u e = a # Send t h e i n p u t s i g n a l s t o t h e DUT
15 . .
16 s a m p l i n g f u n c t i o n (a , b , op) # Sample c o v e r a g e
17 a s s e r t r e f o u t == dut . r . v a l u e . i n t e g e r # A s s e r t o u t p u t s from r e f e r e n c e

model and DUT

Listing 1: Python-Cocotb testbench e.g. ALU

DUT
(I2C Slave)

Python testbench

Start condition

start

Stop condition

stop

Send data to the slave
from the Master

sda_drive

Await to receive the
ACK from slave

ack_recieve

Check if ACK is
received after a certain
operation, otherwise

call stop()

check_ack

Send ACK from the
testbench

send_ack_tb

Check the data for
correctness read

sequentially

check_seq_read

Check the data read
randomly if it is correct

check_random_read

Fig. 4: BFM class based Python-Cocotb testbench e.g. I2C

C. Makefile

A verification environment set-up needs a build option Makefile. It contains information about the project, starting
from EDA tool to top level instantiation. Listing 2 shows the Makefile for setting up the testbench environment for
ALU. After the exceution of command in line 8, the libraries gets compiled and simulator starts.

1 SIM ?= xce l ium
2 GUI ?= 1
3 TOPLEVEL LANG ?= v e r i l o g
4 MODULE = a l u t e s t
5 TOPLEVEL = a l u
6 VERILOG SOURCES = . . / r t l / a l u . v
7
8 i n c l u d e $ (c o c o t b) / m a k e f i l e s / M a k e f i l e . sim

Listing 2: Makefile e.g. ALU

2Coroutine is a decorated function that facilitates asynchronous execution and cooperative multitasking.

5

IV. RESULTS

The three design IPs i.e., ALU, I2C slave, and ADC are verified in SystemVerilog-UVM and Python-Cocotb
testbenches and investigated compatibility of Cocotb with commercial simulators like Cadence Xcelium [20] and
Siemens Questa [21]. Additionally, an open-source simulator Verilator [22] is explored.

A. Features Comparison

While implementing the verification environments with SystemVerilog and Python as HVLs, they are found to have
setup advantages with Python over SystemVerilog like, setting up test environment with any simulator only requires
to modify makefile variable SIM. Table I shows other features compared for both verification implementations.

TABLE I: Features comparison for SystemVerilog and Python-Cocotb

Feature SystemVerilog Python Remarks

Declaration of
data types Static Dynamic

Python allows undeclared variables and perform
any operation on them. Additionally, it has advanced data structures
e.g., tuple and dictionary, unlike SystemVerilog.

Supported types
of logic 0, 1, X, Z X, Z, U, W Python-Cocotb needs BinaryValue object for these logics

Parameterization and
size of the variable Required Not required If size is not declared in SystemVerilog, data may be

lost after an assignment to a different size than specified
Styles of control flow begin, end Proper indentation elif in Python replaces case in SystemVerilog/Verilog

Functions Not objects Callable objects Function in SystemVerilog are not objects and cannot be
stored or passed directly as arguments

Exceptions Not supported Supported In Python, exceptions are caught with try/except/finally blocks
Libraries - Large Create reference model for any complex design easily

Interpreted No Yes It allows to restart the simulator without recompiling and
edit tests while it is running

Design Hierarchy Includes top
testbench

Does not include
top testbench

It limits debugging capabilities, since tracing back signals
in the testbench is not possible

B. Performance Metrics

Based on simulation results, certain performance metrics are defined. These metrics are analyzed and compared
for both verification environments i.e., Python-Cocotb and SystemVerilog-UVM in this subsection.

1) Design Hierarchy

The hierarchy in the simulators design browser is different in SystemVerilog-UVM and Python-Cocotb testbenches.
The SystemVerilog-UVM testbench includes the top testbench whereas Python-Cocotb starts with the DUT or
TOPLEVEL defined in the build option, as explained in Figure 5. This results in the limitation of Python-Cocotb
since it hinders the debugging capabilities of the testbench signals.

(a) Python-Cocotb (b) SystemVerilog-UVM

dut

simulator uvm_test_top

tb_top

simulator

env

UVM

vif

ref_1

dut_1

vrif

packages

Fig. 5: Design Hierarchy

6

2) Simulation run-time

The Python-Cocotb and SystemVerilog testbenches are compared in terms of simulation run-time. They are
simulated using various simulators such as Xcelium, Questa, and Verilator, with detailed testbench specifications
provided in subsection III-B. During the simulation, it became evident that Verilator cannot simulate I2C and ADC
designs due to non-synthesizable nature of I2C design used for this work whereas ADC design required substantial
modifications to verilate it. But ALU design got simulated with Verilator, showing similar run-time performance as
Xcelium.

Additionally, it is observed that the simulation run-time of Python-Cocotb testbenches is slower compared to that
of SystemVerilog or SV-UVM testbenches, as demonstrated in Figure 6a, Figure 6b, and Figure 6c. This difference
is attributed to the reasons discussed. Generally, SystemVerilog employs simulation directives and commands to
establish communication with the simulator. The close integration between SystemVerilog-UVM and the simulator
enhances simulation execution, resulting in relatively shorter run-time. Conversely, the interaction between Python
testbenches and the simulator via VPI/VHPI is typically slower and less tightly integrated than the direct interac-
tion between SystemVerilog-UVM and the simulator. This overhead becomes more significant as the number of
transactions increases, leading to longer simulation run-time for Python-Cocotb testbenches.

20000 40000 60000
Number of transactions during simulation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ul
at

io
n

ru
n-

tim
e

(s
ec

on
ds

)

5.11

10

15.5

0.6
1.4 1.6

4.69

11.73

20.79

1.08
1.77

2.47

Python-Cocotb vs SV-UVM

SV-UVM Python-Cocotb
Xcelium
Questa

(a) ALU: A test is run separately for various transactions

1
Number of transactions during simulation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Si

m
ul

at
io

n
ru

n-
tim

e
(s

ec
on

ds
)

1.23

0.2

1.11

0.29

Python-Cocotb vs SystemVerilog

SV Python-Cocotb
Xcelium
Questa

(b) I2C: 3 tests are run in a single transaction

200 400 600
Number of transactions during simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

ul
at

io
n

ru
n-

tim
e

(s
ec

on
ds

)

0.13
0.23

0.36

0.1 0.2 0.2

0.96

1.87

2.79

1.07

1.51

2.06

Python-Cocotb vs SystemVerilog

 SV Python-Cocotb
Xcelium
Questa

(c) ADC: A test is run separately for various transactions

Fig. 6: Simulation run-time comparison with different simulators

3) Coverage Analysis

Table II details the bins defintion for all the cover items for design IP, i.e., ALU, I2C, and ADC along with
the results. The coverage model defined was same in both SystemVerilog and Python testbenches and the results
obtained were also similar in both cases. For ALU and ADC, the total coverage obtained in 100% for the bins

7

TABLE II: Coverage results for SystemVerilog-UVM and Python-Cocotb testbenches

Design Cover items Bins definition Coverage
(%) Description

ALU

a 3 bins

100

Cover the range -231 to 231-1b
op 1 bin Cover all operations ranging 0 to 7

aXb

- -aXop
bXop

aXbXop

I2C

c start

2 bins; True,
False

50

Cover start condition
c stop Cover stop condition
c write Cover write operation
c read Cover read operation
c ack Cover ACK recieved

c nack Cover NACK condition

c repeated start 100 Cover repeated start, i.e., if write and
read is done in the same test.

c mem data 16 bins 90.62 Cover for data write and read in memory are same

c mem addr 32 bins 100 Cover for write and read are same for
memory address access

ADC analog in tb 3 bins 100 Cover the range -10V to 10V

defined whereas I2C reached 85.48%. It was also verified that all the functional coverage features in SystemVerilog
is available in cocotb-coverage library, although they are syntactically different.

V. EMPIRICAL OBSERVATIONS

While implementing the verification enivironments for the design IPs i.e., ALU, I2C, and ADC with Python-Cocotb
and cocotb-coverage, there are some observations made as listed below.

1) ALU: While utilizing the Python-Cocotb testbench (i) If the input signals a, b, and op are not initialized, it
gives Assertion Error in the first clock cycle and simulation stops. Therefore, it is crucial to initialize the input
signals before performing any operation. (ii) The bins definition for covering ALU signals has to be specified
explicitly. If auto bins are attempted to be created for this design IP, it requires a significant amount of space
for the number of bins to be generated and results in a memory error.

2) I2C: SDA is open-drain terminal, so it has to be pulled up through a resistor. Python-Cocotb lacks native
support for pull-up/pull-down signals and tristate logic, a workaround is achieved by introducing an HDL
wrapper. In contrast, SystemVerilog, being a HDL, provides built-in support for pulling up any signal, and
does not need an additional wrapper. Figure 7 details the workaround to include tristate logic in Python
testbench.

tb_top.py

//Tristate Buffer
If SDA_drive = 1
 SDA = SDA_tb

else
 SDA = 1'bz

slave_top.v

Cocotb slave.v

Fig. 7: HDL Wrapper to include tristate logic in I2C Python-Cocotb testbench

3) ADC: Analog simulation package that lets real number modelling in SystemVerilog, are not supported in the
Python-Cocotb. It gives VPI error (Communication error). To convert the real input analog in to 64-bit digital
input, the datatype is defined as real type. This 16-bit signal is then sent to the design. Listing 3 and 4 show
that analog pack sv module is imported in the adc wrapper for SystemVerilog testbench whereas the input
analog in is declared as real datatype for Python testbench respectively.

8

1 i m p o r t a n a l o g p a c k s v : : * ;
2 input a n a l o g t a n a l o g i n ;
3 a s s i g n a n a l o g i n p u t = $ r e a l t o b i t s (a n a l o g i n) ;

Listing 3: adc wrapper in SystemVerilog testbench

1 input r e a l a n a l o g i n ;
2 a s s i g n a n a l o g i n p u t = $ r e a l t o b i t s (a n a l o g i n) ;

Listing 4: adc wrapper in Python-Cocotb testbench

VI. CONCLUSION

In this paper, We analyzed the verification of three designs using Python-Cocotb and SV-UVM in three simulators.
When running Python-Cocotb testbenches, it is found that the simulation run-time increases with increase in trans-
action count for the multiple simulation run. This behavior is attributed to the communication between the testbench
and simulators through VPI/VHPI, which involves longer interaction times with the simulators. Consequently, the
overall simulation run-time is extended. Nevertheless, this interaction via GPI provides necessary hooks to access
and control the simulator’s internal data structures, signals, and events.

Concerning the CRV and functional coverage in Cocotb, the constrained randomization of the input signals and
coverage constructs are derived from cocotb-coverage library. The coverage analysis yields results similar to those
obtained in SystemVerilog.

Despite Python’s interactive and user-friendly coding nature, the testbench is not included in the design hierarchy
due to Cocotb’s co-simulation approach. If the testbench can be integrated into the top of the hierarchy, it would
greatly improve debugging capabilities by facilitating the tracing back of signals. Combining Cocotb and Python
libraries, and machine learning techniques holds promise for enhancing the verification process.

REFERENCES

[1] H. Foster, “2022 wilson research group functional verification study,” Siemens Digital Industries Software,
Tech. Rep., Oct. 2022.

[2] R. Dennard, “Design of ion-implanted mosfet’s with very small physical dimensions,” Proceedings of the
IEEE, vol. 9, no. 5, pp. 256–268, 1974.

[3] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, no. 1,
pp. 82–85, 1998.

[4] W. Hughes, S. Srinivasan, R. Suvarna, and M. Kulkarni, “Optimizing design verification using machine
learning: Doing better than random,” CoRR, vol. abs/1909.13168, 2019. [Online]. Available: http://arxiv.org/
abs/1909.13168.

[5] “Constrained random verification,” in ASIC/SoC Functional Design Verification. Boston MA: Springer US,
2018, pp. 65–74, ISBN: 978-3-319-59418-7. DOI: 10.1007/978-3-319-59418-7. [Online]. Available: https:
//doi.org/10.1007/978-3-319-59418-7.

[6] vanshika4042, “Top 10 python applications in real world,” Accessed: August 05, 2023. [Online]. Available:
https://www.geeksforgeeks.org/top-10-python-applications-in-real-world/.

[7] S. Siadati, Fundamentals of python programming, Apr. 2018. DOI: 10.13140/RG.2.2.13071.20642.
[8] X. Cai, H. P. Langtangen, and H. Moe, “On the performance of the python programming language for serial

and parallel scientific computations,” Sci. Program., vol. 13, pp. 31–56, Jan. 2005. DOI: 10.1155/2005/619804.
[9] T. Fitzpatrick, “Verification learns a new language: – an ieee 1800.2 implementation,” 2021.

[10] J. Elfström, Language specification length? August 12, 2013 (Accessed: January 15, 2023). [Online]. Avail-
able: http://www.fivecomputers.com/language-specification-length.htm.

[11] Aldec, Effective testbench creation using cocotb and python, November 09, 2017. [Online]. Available: https:
//www.aldec.com/en/support/resources/multimedia/webinars/1980.

[12] A. Wiemann, Standardized Functional Verification, 1st ed. 2008. New York, NY: Springer US, 2008, pp. 1–8,
ISBN: 9780387717333. [Online]. Available: https://doi.org/10.1007/978-0-387-71733-3?nosfx=y.

[13] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges and trends in modern soc design
verification,” IEEE design and test, vol. 34, no. 5, pp. 7–22, 2017. DOI: 10.1109/MDAT.2017.2735383.

[14] M. Singhal, “Introduction about advanced functional verification,” July 04, 2015. [Online]. Available: https:
//learnuvmverification.com/index.php/2015/07/04/187/.

9

http://arxiv.org/abs/1909.13168
http://arxiv.org/abs/1909.13168
https://doi.org/10.1007/978-3-319-59418-7
https://doi.org/10.1007/978-3-319-59418-7
https://doi.org/10.1007/978-3-319-59418-7
https://www.geeksforgeeks.org/top-10-python-applications-in-real-world/
https://doi.org/10.13140/RG.2.2.13071.20642
https://doi.org/10.1155/2005/619804
http://www.fivecomputers.com/language-specification-length.htm
https://www.aldec.com/en/support/resources/multimedia/webinars/1980
https://www.aldec.com/en/support/resources/multimedia/webinars/1980
https://doi.org/10.1007/978-0-387-71733-3?nosfx=y
https://doi.org/10.1109/MDAT.2017.2735383
https://learnuvmverification.com/index.php/2015/07/04/187/
https://learnuvmverification.com/index.php/2015/07/04/187/

[15] Ankitha and D. Aradhya, “A python based design verification methodology,” Journal of University of Shanghai
for Science and Technology, vol. 23, pp. 1–11, 2021.

[16] M. Cieplucha and W. Pleskacz, “New constrained random and metric driven verification methodology using
python,” DVCon, 2017.

[17] M. Ballance, Pyvsc: Systemverilog-style constraints, and coverage in python, https://github.com/fvutils/pyvsc,
2019.

[18] B. Varambally and N. Sehgal, Optimising design verification using machine learning: An open source solution,
2020.

[19] A. J. Shibu and P. Kumar, “Verlpy: Python library for verification of digital designs with reinforcement
learning,” pp. 1–7, 2021.

[20] C. Xcelium, https://www.cadence.com/en US/home/tools/system-design-and-verification/simulation-and-
testbench-verification/xcelium-simulator.html, 2023 (Accessed: Feburary 26, 2023).

[21] S. Questa, https://eda.sw.siemens.com/en-US/ic/questa/simulation, 2023 (Accessed: Feburary 26, 2023).
[22] W. Snyder, Verilator, https://github.com/verilator/verilator, 2023 (Accessed: Feburary 26, 2023).

10

https://github.com/fvutils/pyvsc
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://github.com/verilator/verilator

	Introduction
	Background
	Implementation
	Design
	ALU
	I2C
	ADC

	Python Testbench
	Makefile

	Results
	Features Comparison
	Performance Metrics
	Design Hierarchy
	Simulation run-time
	Coverage Analysis

	Empirical Observations
	Conclusion
	References

