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Abstract— System-level verification of today’s System on a Chip (SoC) is highly challenging, having to consider 

both hardware and software (program code) stimuli and checking interaction at the same time, while maintaining 

reusability, scalability and a timely delivery with high quality.  

Integrating both C tests (containing the software instructions) and the Universal Verification Methodology (UVM) 

code (containing the rest of the testbench components aimed to verify the hardware) into a single verification testbench 

is a main approach for SoC level verification. However, this approach brings limitations for the control, reusability 

and randomization of tests.  

This paper demonstrates a technique that allows dynamically random generation and driving from an UVM 

verification environment of CPU instructions for SoC verification, using mainly a black-box approach for the design. 

The solution accommodates any design with one or more CPU cores, it is flexible for design changes and even for CPU 

Instruction Set Architecture (ISA) changes. The solution is fully compatible with UVM and non-UVM based 

verification testbenches. Examples show how this method is implemented in a testbench that automatically adapts and 

works with any microcontroller design configuration. 
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I.  INTRODUCTION  

There are different methodologies for SoC verification. The main challenge is considering the software and 

hardware working together during the simulation. For this reason, usually, the code for the CPU core is written 

in C or Assembly, then processed by a compiler, loaded into the Flash Model before the simulation starts and is 

executed by the CPU during the simulation.  

However, C tests solve only a part of the problem - the stimuli for the CPU instructions. There are other 

stimuli driving SoC pins, like peripheral communications (I2C, SPI, UART etc.). Since the Universal 

Verification Components (UVCs) are already working at a module level, a natural solution is to reuse the UVM 

components from module to system. In this way, C tests contain the software code, while the SV testbench 

contains the stimuli for the hardware and the passive components, like monitors, checkers and scoreboard. There 

could be a communication protocol between the SV testcase and the C code creating more complex scenarios.  

There are major disadvantages to using C tests together with SV code, like the challenge to communicate 

efficiently between SV and C, which decreases the controllability of the stimuli, becoming harder to implement 

more complex scenarios. There are limitations for randomization and reusability of tests as well.  

There are several industry approaches which try to solve the problem of driving the CPU instructions in a system-

level verification approach using OOP verification language like System Verilog/UVM.  

 

II. INDUSTRY APPROACHES FOR DRIVING CPU INSTRUCTIONS WITH SYSTEM VERILOG 

A. CPU Bus Functional Model (BFM) Approach 

As shown in Figure 1, The CPU module is replaced by the SV model called CPU BFM and the test interacts 

directly with the model. For example, if the application wants to configure a register, the write task in the test 

mailto:Bogdan.Todea@microchip.com
mailto:Madhukar.Mahadevappa@microchip.com
mailto:Pravin.Wilfred@microchip.com


 

2 

 

sends the write command to the CPU model and the BFM in turn writes into the specific register. The 

communication with Flash and cache is no longer necessary since all instructions are generated in the UVM 

Testbench – as seen in Fig. 2.  

 

The disadvantage of this model is that several design blocks are excluded from verification at SoC level:  

Flash Model, cache and CPU - which are replaced by the verification testbench models. They are represented 

with RED in Figure 1. We see the CPU replaced by the SV CPU BFM and Flash and cache made redundant in 

Figure 2.  

 

While replacing the Flash Model with a verification testbench model might present a low risk, excluding 

from verification the NVM controller, the cache and especially the CPU (the core of the SoC) is increasing the 

risk of missing important bugs (decreases the quality of System Level Verification).  

 

 
 

Figure 1. CPU BFM will replace CPU and make Flash Model and Cache redundant for the design functionality 

 

 
 

Figure 2. CPU BFM Approach – NVM and cache, modules are “disabled” and the CPU replaced by a model 

 

B. Instruction loader approach 

As shown in Figure 3, the instruction loader method does not replace the CPU with a model, but it bypasses 

the cache output of instructions by adding an instruction loader and a MUX at the input of the CPU, which switches 

the input program data to be the one from the Testbench Instruction Loader, instead of NVM program data.  

 



 

3 

 

 
Figure 3. Instruction loader approach 

 

The disadvantage with this approach is that the Flash and cache functionality are removed from SoC 

verification, as shown in Figure 3 (design blocks inside the red line).  

 

Both cases A and B present a very low robustness for Gate Level Simulation (GLS), due to a huge number of 

signals inside the DUT which need to be driven by the testbench. It is very difficult to handle the case when DATA 

MUX doesn't have its output registered. In this case we need to drive data from DATA MUX with a constant 

delay to mimic the combinational delay which might vary from netlist to netlist.  

 

III. PROPOSED APPROACH FOR THE CPU INSTRUCTION DRIVING 

The methodology proposed by this paper aims to complement the already existing C based SoC verification. 

 

The paper acknowledges that C based test verification is of critical importance for every SoC verification 

project, since we must verify at the same time the hardware and the software as a single DUT at SoC level. 

However, the gaps in verification of the C based methodology that were discussed in the first chapter can be 

covered as a complementary approach by the new proposed method.   

 

In the proposed method, the CPU instruction code will be loaded directly and dynamically into the NVM, 

using a component written in UVM, called the Instruction Transactor (IX).  

The IX is formed of three components:  

- IX Driver – this component implements the translation of stimuli from the UVM testbench into 

instructions, based on the Instruction Set Architecture (ISA) of the CPU. This means that the IX is 

dependent on the ISA.  

- IX2NVM IF – this component implements the tasks in charge of writing the instructions received from 

IX Driver into the NVM Flash Model. This block is dependent on each Flash Model.   

 

- IX Monitor – this component is optional, but important to have an accurate synchronization with the SFR 

space when reusing the IP level register models and scoreboards. This component is dependent on the Bus 

to other components (like peripherals, RAM, etc.).  

 

By developing IX Drivers for different CPU Architecture types and IX2NVM IF for different Flash Model 

types, a library will be developed for different types of the IX Transactor.  

 

       The interface between the IX Driver and the UVM testbench will be standard, so we can reuse the verification 

stimuli and tests by carefully selecting the IX Driver based on the ISA and the IX2NVM IF based on the Flash 

type.  

 



 

4 

 

The UVM test will dynamically generate randomly constrained sequences that will be transmitted to the IX. 

The IX will convert it to CPU instructions, read the current program memory address and write it to the first Flash 

location from where the CPU will fetch the next instructions in the next cycle.  

 

 
Figure 4. Backdoor load through the CPU Instruction Driver 

 

 
Figure 5. Detailed representation of IX loading opcode/instructions to Flash 

 

This approach can be visualized as loading of binary file to flash dynamically when we want to perform any 

operation with CPU. IX driver would be monitoring the location from which the current instruction is fetched. 

Whenever it receives a new transaction from the test, it backdoor loads the Flash. CPU is fetching the instruction 

from flash and executes it.  

 

It is not necessary that all instructions in the ISA are supported by the IX Driver. For SoC level verification, 

the requirement is to implement in IX Driver the instructions which are necessary to execute SoC level modes 

(SFR read/writes, any debug, power save instructions, CPU instructions taking a long time, etc.). Most of the non-

CPU tests ran at SoC level do not need all the instructions to be implemented. 

IV. ADVANTAGES OF USING A SYSTEM VERILOG CPU INSTRUCTION DRIVER  

A. Ensuring the complete integrity of the Design under test (DUT) 

As can be seen in Figure , the proposed methodology does not require excluding any component of the 

design from the SoC verification. The proposed approach will treat the top digital as a black box (with two 
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exceptions). The only “intrusion” of the UVM verification environment inside the DUT is by reading the 

Program Counter (PC) and the optional monitoring of the CPU Communication bus with other components. 

Both of these buses are top level connections and are not changed in the final synthesis. This ensures the 

verification of connectivity for all the DUT components, from the NVM model to the cache, to the CPU and to 

the blocks communicating with the CPU (peripherals, Interrupt controller, DMA, RAM, etc.).  

  

B. High reusability of tests and testbench 

This methodology presents a high flexibility for design change and high reusability between different 

projects with different memory technologies, CPU ISA types and numbers of CPU cores. Using a layered 

hierarchy, the UVM testbench can be completely decoupled from the design architecture, Flash technology and 

even from the CPU architecture/type. 

 

There are various levels of reusability:  

 

1) Reuse testcase scenarios from module to system  

The methodology used in our case for SoC verification is based on reuse from module to system not only of 

the verification testbench, but also the testcases. The reuse of testcases is done through a System Abstraction 

Layer (SAL), a system that will assure the right integration between the test and the testbench.  

This means that any test for any peripheral can be reused, if written according to the SAL rules. For 

example, at module level, the SFR access can be done through the UVM reg map component, directly accessing 

the module level SFR access bus (the peripheral bus). For SoC level, the same SFR access will be through the 

IX. The testcase will contain just the specific task of writing or reading the SFR and the SAL will take care of 

handling the right method of SFR access, depending if the testbench module or system level.  

 

2) Reuse testcase scenarios and testbench from project to project  

Testbench and testcase scenarios would be reused from project to project with minimal impact.  

There are several possible differences between projects:  

 

a) Different Flash technology  

The dependency of different NVM types (depending on size, technology, model provider, etc.) is resolved 

by creating an additional layer between the IX and the NVM model – the IX2NVM interface. One such interface 

can be created for each memory type, with a common interface to the IX driver. 

 

b) Different CPU cores architecture or different ISA 

In case of a different CPU Instruction Set Architecture, we select the corresponding IX driver, which is 

based on the ISA type.  

The IX driver is a reusable component, created specifically for each CPU instruction set architecture, but with 

a common interface with the IX2NVM IF block and with the rest of the testbench.   

The IX Driver can be automatically generated from the ISA documentation.  

 

c) Multicore projects  

In case of multicore projects, the CPU instruction driver components would be instantiated one time for each 

core: one instruction data path component, consisting of one IX Driver (7), one IX2NVM IF (6) and one IX 

Monitor (8) for each core.  

 

C. Seamless integration for Gate Level Simulations (GLS)  

A main advantage is that the IX is seamlessly integrated for gate level simulations. Since this methodology 

is virtually a black-box approach of the DUT, no components of the design were excluded from verification 
(like in  

Figure 12 or Figure 3). 

The only 2 buses monitored are:  

- Program Counter (PC) – mandatory in order to know where to write the next CPU instruction in the 

NVM 
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- Bus Matrix to other modules – optional, required for optimal synchronization with IP testbench 

scoreboard  

 

Both are module level ports (top level connections) which are not changed by the synthesis tool. The gate 

level netlist should not require any change in order to have the IX driver plug and play.  The top digital would 

be RTL or gate level netlist, depending on the type of the simulation. As can be seen in Figure 4, the type of the 

top digital component (RTL or netlist) is transparent to the verification testbench. 

 

D. Randomization and Coverage  

The coverage that makes sense to define for chip level verification will cover just a small space of the total 

randomization space,  chip verification is more concentrated on verifying features across multiple blocks, versus 

module verification, which is concentrated more on randomization of features of each block.  

 

There is a multitude of characteristics that can be randomized within a set of instructions at chip level. The 

biggest space for randomization is found with mathematical instructions: value of operands and working 

registers (WREGs) used for the operands (randomly choose any of the WREGs). Another randomization space 

is the randomization between the consecutive transactions, to create complex scenarios with different kinds of 

hazards, random sequences of consecutive transactions, etc.  

 

The space of randomization for instructions can be covered very well at module level (through simulation 

based, formal verification or a mixed). For chip level, it makes sense to cross the instruction set coverage with 

cross-functional coverage of other blocks. This cross-functional coverage cannot be collected at module level.  

The instruction set coverage is crossed at SoC level with interactions with other blocks (DMA, RAM, 

Interrupt Controller, peripherals).  

 

One of the most suitable candidates for randomization were the CPU mathematical instructions, like Divide 

(DIV) and Multiply (MUL).  

 

Tests have been developed, containing scenarios for a couple of mathematical instructions, each containing a 

cover group of its own. 

 
Figure 6. Simplified flow diagram for stimuli generation and checking 

Below is a randomization example of the operands: 
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Figure 7. Randomization of the operands used 

Below is an example of coverage for the randomized instructions scenarios:  

 

 
              Figure 8. Cover group used CPU instruction coverage 

 

By using this approach, several RTL issues have been discovered in scenarios with the CPU DIV and CPU 

MULT instructions. Using randomization, the test was able to detect corner cases in which the instructions did 

not work correctly. 

 

E. Execute Custom code 

We want to have a hookup in our verification environment to execute any instruction or series of instructions 

from the testcase. In this mode, the user can specify the decoded instruction to be executed. This can be viewed 

as a function written in C or assembly and called from UVM code. This could be also helpful in simulating 

validation reported issues using the same binary file used for validation.  

To reproduce the validation issue, it is very difficult to reuse the application code (C code) as it is, since 

there are no place holders for configuring the testbench components.  

With the CPU IX feature, we can load the binary as it is to configure the DUT and the SV testbench can 

drive external stimulus and monitor the response. 

 

F. Reference Model for CPU instructions logic at chip level  

Randomization requires using some golden model which can automatically compute the expected data, 

based on the driven stimuli and check it versus the returned data.  

Golden Model can be modeled for each instruction aside, with relatively simple System Verilog functions. 

The example below shows a very simple check that replaced thousands of lines with hardcoded expected values, 

that were previously written in C or assembly testcases. 

 

 
Figure 9. Example model for CPU instruction  
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V. CHALLENGES IN IMPLEMENTING THE SYSTEM VERILOG CPU INSTRUCTION DRIVER  

A. Interrupt handling  

IX supports Interrupt Service Routine (ISR) handling for both SV based ISR and Assembly (ASM) based 

ISR code. 

 

1) SV based ISR: 

IX has two main channels to receive instructions from the test:  

 1. Software main channel  

 2. ISR channel 

User code is sent to IX through software main channel and ISR code through ISR channel. By default, IX 

will be processing code from software main channel and when interrupt happens, IX will switch to ISR channel 

and process instructions from this channel. Once ISR execution is complete, IX will switch back to software 

main channel. 

 

2) C/ASM based ISR: 

Inside the Flash, the initial space can be allocated for Interrupt Vector Table (IVT) and ASM ISR code. User 

space will start after the ISR code placement, so there is no risk of over-writing the IVT or the ISR code in 

Flash. When interrupt happens, the CPU code execution jumps to ISR code and after completion it returns to the 

execution code in user space. With this approach, the ISR code will be pre-loaded in the Flash Model during 

compilation stage and so there is no backdoor loading of ISR code by IX. IX will only stop processing 

instructions in main channel and waits for ISR execution to complete. 

B. Handling End of Memory 

In our approach, we are keeping the program control flow in the testcase. When CPU is fetching, the 

instruction program counter would be incremented linearly. If the testcase scenario is long, the PC may reach 

end of memory. Two scenarios need to be address here:  

 

1) When there are no incoming transactions, CPU would still be executing (NOP instruction) and program 

counter (PC) would be incrementing. At this time, IX would be monitoring the PC and it will issue an instruction 

(GOTO) to CPU to move the program counter back to the reset vector.  

 

2) When the incoming transaction can't be loaded into the remaining memory space, IX inserts an instruction 

to CPU to move program counter back to reset vector. 

We don't see any issue with the insertion of extra instruction to change the program counter, since test case 

is agnostic about the time at which instruction is executed. 

 

 
Figure 10. Handling of End of memory  

C. Burst instructions 

IX supports burst write operation. Burst write transaction from test mentions the size of burst, based on the 

size, IX will backdoor load opcodes at one shot. As the PC increments, the CPU will execute the loaded opcodes 

sequentially.  
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Burst read operations are not supported, since in this case, the IX needs to wait for response from DUT and 

collect the read data and pass the read data to the test.  

For write operations, IX does not wait for any response from DUT, so burst mode can be supported. This is 

useful for applications which must execute a predefined series of write items to unlock a feature or configure 

some set of registers in a very specific sequence.  

VI. LIMITATIONS OF THE CURRENT APPROACH  

There are some limitations of the current approach:  

• There is limited support for cache 

• CPU execution for big designs will take a long time at chip level due to high boot times and latency 

introduced due to CPU execution itself 

• The CPU instructions driver will implement only a subset of the complete ISA instructions (the ones 

which makes sense to be verified/executed at SoC level)  

• This is not a complete solution. C-based testcases remain a must. There are scenarios with a very high 

sensitivity to program code instructions, not allowing NOP instructions in between (like performance scenarios 

for CPU, cache, NVM controller, debugger, etc.).  

VII. FUTURE IMPROVEMENTS 

 

 The remaining improvement, with low gain is:  

 

• Automatic generation of the IX driver from the ISA documentation  

 

VIII. CONCLUSION  

By using the UVM CPU instruction driver, the majority of the SoC testcases can be completely written in 

UVM/SV, thus providing a high reusability of tests and testbench components. This approach allows more 

flexibility in generating complex scenarios for the SoC verification.  

It allows full randomization of the scenarios and easier portability of tests and testbenches between projects. 

This methodology presents a high flexibility for design changes and high reusability between different 

projects with different memory technologies, CPU ISA types and number of CPU cores.  

Using a layered hierarchy, the UVM testbench can be completely decoupled from the design architecture, 

flash technology and even from the CPU architecture type.  

The entire SoC design connectivity will be verified, compared to other SoC verification methodologies, 

which exclude from connectivity verification certain design blocks. 

An important advantage is that the IX driver is seamlessly integrated for gate level simulations. 
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