

1

Efficient Debugging on Virtual Prototype using

Reverse Engineering Method

Sandeep Puttappa, Senior Staff Engineer, Infineon Technologies, Bangalore, India

(sandeep.puttappa@infineon.com)

Dineshkumar Selvaraj, Lead Principal Engineer, Infineon Technologies, Bangalore, India

(dineshkumar.selvaraj@infineon.com)

Ankit Kumar, Associate Engineer, Infineon Technologies, Bangalore, India

(ankit.kumar@infineon.com)

Abstract— In automotive industry, the development of software (SW) involves collaborative efforts among

Semiconductor suppliers, Third party SW partners, Tier1 suppliers, and OEMs. On other hand, Virtual Prototype, a

software model of the hardware implemented using SystemC, has become a preferred choice for SW validation

platform due to their early availability, ease of use, prolonged maintenance lifespan, and superior debugging

capabilities. With multiple stakeholders participating in SW development, the complexity of the software itself

increases. Consequently, there arises a necessity to exchange SW-related information among these stakeholders when

an issue is detected during its validation over ECU Virtual Prototype platform. However, given the confidential nature

of the software, sharing such information presents a new challenge. This challenge, in turn, complicates the task of

reproducing the identified issue on a Virtual Prototype. In this paper, we will discuss on ‘Reverse Engineering’ method,

where events are recorded on log format during ECU level simulation and then same recorded data is used to replicate

the original behavior in Standalone reproducer environment consisting of only the IP SystemC model and the

reproducer model.

Keywords— Reverse Engineering, Virtual Prototype, SystemC model, Trace and Debug, Standalone debugging

I. INTRODUCTION

In Automotive Industry, the complexity of the software is constantly increasing over time. With Software

Defined Vehicle (SDV) becoming popular, the modern cars are having multiple number of advanced System on

Chip (SoC)/Microcontroller Unit (MCU) components and a big part of them is operated and differentiated using

the software to improve the safety of the vehicle and its performance. On other hand, there exists a deep value chain

consisting of Semiconductor suppliers, Third party SW partners, Tier1 suppliers and OEMs. In addition to

increasing complexity of software, the Time to Market is becoming a critical requirement due to changes in market

dynamics resulted by new entrants into the market. Hence the industry is looking for new methodologies to speed

up the development of these complex software components. One of these methodologies is simulation based virtual

validation prior to HW availability. In this context, the MCU simulation platform also called as Virtual Prototype

(VP) is becoming popular as it mimics the functionality and Hardware - Software interface precisely making it best

fit to frontload the validation of SW. Moreover, the usage of MCU VP is continued in post silicon phase by

integrating the MCU VP into software Continuous Integration (CI) and Continuous Delivery (CD) framework as

VP helps to reduce the cost of HW based test benches. This means, the MCU VP is expected to be maintained for

long time (~15 years) very similar to the production software. Lastly the VP being a software model, it provides an

enhanced tracing and debugging capabilities enabling faster debugging of the complex software failures. As the

MCU VP supports scalability, the MCU VP Prototype is extendable by integrating the models of external

components making is as VP at Electronic Control Unit (ECU) level which increases the complexity of VP platform

further.

Given that the usage of MCU VP is gaining a significant traction in the industry and its complexity is increasing,

it is important to focus on the improvements of quality and debuggability of the VP. One of today’s challenges

related to debugging MCU VP issues is unavailability of access to the application use cases and software

components and ECU level architecture and configuration that result in failure of the MCU VP. Since SW

2

components are considered a key confidential IP by respective suppliers, it is not easy to share with VP suppliers.

As we already discussed, there is deep value chain in software eco-system, it involves increased time and effort to

debug complex failure though joint debugging involving all relevant parties. As MCU VP is a complex system on

its own, complete reproducer information is necessary to debug and fix the issue in quick time. This brings the

challenge to MCU VP developer, on how to reproduce the customer issue in the absence of SW binary or

reproducer.

II. RELATED WORK

 Although debugging is a key challenge, there exists very few publications in public domain that focus on

problems around effective debugging of SystemC models. Ref [1] briefly mentions about how the trace generated

at MCU level can be used to reproduce failing scenario using MCU VP setup. This requires tool specific utilities

and does not work in Accellera SystemC environment. Ref [2] describes reusing RTL traces to verify SystemC

model at unit level. Hence it focuses on improving the quality of the model and does not address the challenge

related to debugging field issues reported by customers. Ref [3] describes the Record and Replay of SW issues in

embedded systems which motivated us to apply a similar concept for SystemC model debugging. Ref [4] presents

development of a non-intrusive SystemC tracing tool. However, this requires shipping an additional tool to end

users. Hence, we propose a method that enables recording end user issue at ECU level and replaying at unit level

based on purely tracing capabilities of SystemC models.

III. PROPOSED SOLUTION

In MCU VP, each functional block (IP) model is commonly implemented using SystemC and TLM 2.0

modelling libraries. These libraries support the design of the functional block models at higher abstraction by using

event-based design principles. This design principle is based on optimizing the number of invocations of the

SystemC processes and events in the simulation. This helps to meet the required simulation performance and to

ensure 100% functional correctness. In such design, the model behaviors are invoked in response to one of the

following triggers.

A. Model Configuration Changes

B. Register Transactions

C. Interface Modifications

In SystemC based IP model, the Model Configuration Changes occur only in SystemC Elaboration phase and

whereas the Register Accesses and Interface Modifications occur in the subsequent SystemC Simulation phase.

In SystemC model, it is possible to identify the event(s) that initiated the process(es) during the simulation. In

addition, the SystemC model also enables monitoring of model behavior by utilizing debug messages. By using

these two capabilities, we can effectively capture the various triggers influencing the model's behavior. If these

triggers information is captured alongside simulation time, then this data can subsequently be used within a

standalone environment to replicate the original behavior.

In this paper, we propose a method:

• To implement logging feature in the IP SystemC model for recording all the triggers that occur at model

boundaries

• To replicate the model’s behavior accurately in an independent environment using recorded data

3

IV. IMPLEMENTATION

The implementation of the 'Reverse Engineering'

method requires the fulfilment of the following two

prerequisites.

• Instrumentation of logging into the existing

IP SystemC model

• Creation of a standalone reproducer

environment.

Both of these prerequisites are achieved through an

automation framework developed in-house.

A. Instrumentation of logging into the existing SystemC model

This step involves enhancing the existing IP SystemC model by adding a recording feature. The instrumentation

involves inserting code one time within the model's codebase that can capture and log various events and states

during the model's execution. In order to enable the recording of events occurring at the model boundary, it's

necessary to introduce extra callback functions and implement logging within these callback functions.

The following section outlines three categories of triggers that can impact the model's behavior along with an

explanation of how to capture and record these events.

• Configurations

Typically, models are designed with wide range of features and configurability helps in making the

design more scalable and re-usable across many MCU VP platforms. Based on these static

configurations, the model hierarchy is created during elaboration phase. These configurations remain

unchanged throughout the simulation phase. These configurations are logged on simulation output

during the model’s construction in the following format.

Model Constructor (Model Name, Data Type1 Parameter Name1, Data Type2 Parameter Name2, …)

{

CONFIGURATION, 1, Data Type1, Parameter Name1, Value1

CONFIGURATION, 2, Data Type2, Parameter Name2, Value2

……

}

4

• Register Transactions

During the simulation, the interactions between software and the model involve bus transactions to access

registers and memory implemented in the IP model. These transactions are triggered by various bus

masters like CPUs, DMA, etc. When the model receives these transactions, the model bahaviours might

be triggered. By instrumenting the functions responsible for handing the bus transactions in the model,

it becomes possible to capture all transaction details and then present them in the following format within

the simulation log output.

Register Access Function (Transaction Object)

{

REGISTER, Simulation Time, Address, Read/Write, Data, Data Length

}

• Interface Modifications

In the simulation phase, external models might influence or modify values on the interfaces. The

SystemC library provides capabilities for registering processes with the SystemC kernel, which can be

invoked when specific types of events take place. To capture changes in values on interfaces, SystemC

processes can be employed by registering interface modifications as events. As a result, whenever a value

alteration occurs on the interfaces, the SystemC kernel triggers the corresponding processes. The

recorded values are then extracted and presented in the simulation log output. In order to record interface

modifications, below updates are required in the SystemC model. For the illustration purpose, logging

method for reset interface is described in the below section.

sc_in <bool> reset_in; //interface declaration

void reset_in_value_changed(); // SystemC process triggered on reset_in interface value change

SC_METHOD(reset_in_value_changed)

Sensitive << reset_in;

void reset_in _value_changed ()

{

INTERFACE, Simulation Time, INTERFACE_NAME, TYPE, CURRENT_VALUE

}

B. Creation of Standalone Reproducer environment

This step involves automated generation of independent reproducer environment to replicate the original

behavior of the IP SystemC model. In this environment both Reproducer Model and the original IP SystemC

model are integrated within Reproducer Top as shown in the figure below.

5

Reproducer model aims to mimic the end user simulation environment closely at the boundary of IP SystemC

model. The Reproducer model is also designed to take the recorded data from the instrumentation step and

simulate the same series of events at IP SystemC model boundary. This ensures that behavior of the IP SystemC

model remains consistent, responding to the same events as it did in the original end user simulation environment.

The key elements of the Standalone Reproducer environment include

• Reproducer Base

The Reproducer model has been designed to provide the interfaces that work together with the interfaces

of the IP SystemC model in a complementary manner. To illustrate, if a model implements the input

interface as ‘sc_in<bool> clock_in’, then the reproducer model implements the corresponding output

interface as ‘sc_out<bool> clock_out’. These two interfaces are meant to interact during simulation.

Below figure illustrates IP SystemC model interfaces and Reproducer model complementary interfaces.

• Reproducer thread

Within the Reproducer model, another significant component is a SystemC thread. In this thread, values

logged at instrumentation step are used to drive on the complementary interfaces of Reproducer model.

An In-house Automation Framework is used to translate the recorded data at instrumentation step into

sequence of events that are to be executed within SystemC thread of Reproducer model.

6

Translation of recorded data into sequence of SystemC boundary trigger events is shown in below figure.

• IP SystemC model

The configuration details recorded during the instrumentation step are used while instantiating the IP SystemC

model within the Standalone Reproducer environment. This ensures that the model architecture remains

consistent before starting the simulation. Below figure describes the recorded configuration values at

instrumentation step and reusing the same configurations to instantiate IP SystemC model.

V. EXPERIMENTAL RESULT

This method has been deployed internally for experimentation. In this section, experimental outcome will be

presented utilizing ‘Interrupt Controller’ SystemC model. At first, a recording feature was instrumented into the

Interrupt Controller SystemC model and a standalone reproducer environment was generated using in-house

automation framework as detailed in section IV. To validate the method, simulation is carried out, and a simulation

log is generated on two distinct environments: end-user environment and standalone reproducer environment.

Finally, the simulation logs are compared. If identical messages within SystemC model are found in both logs, it

serves as a confirmation of a successful reproduction.

Following figure describes the complete flow.

7

Following use-case is demonstrated on end-user environment and standalone reproducer environment

1) SW running on CPU configures the registers in Interrupt Controller and other peripheral models

2) Multiple Peripheral models triggers interrupt at Interrupt controller’s interrupt request lines

3) Arbitration Unit in Interrupt controller arbitrates among all pending interrupt requests

4) Interrupt Controller drives the winning interrupt status on CPU Status input line

5) CPU executes the Interrupt Service Routine (ISR) associated with the requested interrupt

6) After ISR execution, CPU drives an acknowledgement details in Interrupt Controller input line

7) The interrupt controller iterates through the arbitration process again, and steps 3 to 7 are reiterated

The process of generating simulation logs in two separate simulation environments is detailed as follows:

• End-User environment

End-user Environemnt comprises of a MCU/ECU virtual prototype where Interrupt Controller SystemC

model with instrumented recording feature is integrated in it. In this environment, end user runs the

orignal application (SW). Upon running a simulation, all boundary triggers (configuratin, register access,

interface changes) at the Interrupt Controller model are logged and recorded as shown in below figure.

End-User shares the log with model developer.

• Standalone Reproducer Environment

Standalone Reproducer Environment consists of automation framework to translate the recoded events

log to sequence of interfaces read and write events. This sequence is then used within the SystemC thread

of the reproducer model. The figure provided below illustrates the process of transforming recorded

events logs into a sequence of interface read and write events.

8

Within the Standalone Reproducer model, this event sequence is executed by the SystemC thread during

simulation and simulation log is generated.

A comparison was performed between the simulation logs generated for the Interrupt Controller SystemC model

in the end-user environment and the reproducer environment. Identical debug messages were consistently

displayed in both simulation logs throughout the entire simulation process.

VI. CONCLUSION AND FUTURE WORKS

This methodology is implemented for an existing SystemC model of an IP which is currently under development.

The same would be extended for all SystemC models that are part of Infineon’s next generation automotive

microcontrollers. The future work also includes adapting this methodology for serial communication interfaces

and bus master interfaces. Lastly, incorporation of dynamic simulation snapshots along with this methodology

would be planned to leverage the debugging capabilities.

VII. REFERENCES

[1] Sam Tennent, “Developing & Testing Automotive Software on Multi-SoC ECU Architectures using Virtual Prototyping,” DVCon

Europe, 2018.

[2] Amit Nene and Swaminathan Ramachandran, “Trace Based Approach for Unit Level Debug and Verification of C/C++ IP Models,”

Design & Reuse, 2008

[3] Nima Honarmand and Josep Torrellas, “Replay Debugging: Leveraging Record and Replay for Program Debugging,” ISCA, 2014

[4] Nils Bosbach, Jan Moritz Joseph, Rainer Leupers, Lukas Jünge, “NISTT: A Non-Intrusive SystemC-TLM 2.0 Tracing Tool,” IEEE

Patras, Greece, 2022

[5] Harry Broeders and René van Leuken, “Extracting behavior and dynamically generated hierarchy from SystemC models”, DAC,2011

[6] Stefan Kraemer; Rainer Leupers; Dietmar Petras; Thomas Philipp, “A checkpoint/restore framework for systemc-based virtual

platforms”, IEEE Tampere, Finland, 2009

	I. Introduction
	II. Related Work
	III. Proposed Solution
	A. Model Configuration Changes
	B. Register Transactions
	C. Interface Modifications

	IV. Implementation
	A. Instrumentation of logging into the existing SystemC model
	 Register Transactions
	During the simulation, the interactions between software and the model involve bus transactions to access registers and memory implemented in the IP model. These transactions are triggered by various bus masters like CPUs, DMA, etc. When the model rec...

	B. Creation of Standalone Reproducer environment

	V. Experimental Result
	 End-User environment
	End-user Environemnt comprises of a MCU/ECU virtual prototype where Interrupt Controller SystemC model with instrumented recording feature is integrated in it. In this environment, end user runs the orignal application (SW). Upon running a simulation...
	End-User shares the log with model developer.

	VI. Conclusion and Future works
	VII. References

