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Abstract—This paper introduces a system-level simulation platform developed in SystemVerilog for a SPAD (Single 

Photon Avalanche Diode)-based direct Time-of-Flight Sensor. The distinct characteristics of SPAD, including random 

noise and photon detection attributes, are statistically modeled using the Poisson process. Utilizing the system-level 

verification platform, our proposed SPAD model ensures a comprehensive assessment of depth sensor systems, 

covering various incident light conditions and SPAD characteristics. It is demonstrated that a 1.5-meter range 

proximity sensor, equipped with 64 SPADs, a multi-event folded-flash TDC, a 12-bit histogram counter etc., completes 

its simulation in just 4.6 minutes, yielding 4095 histogram data points. 
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I.  INTRODUCTION 

The Direct time-of-flight (TOF) sensor is a device that provides distance (Depth) information by measuring the 

time difference between a light pulse emitted from the sensor's emitter and the light pulse incident on the sensor 

after being reflected from an object, as illustrated in Fig. 1(a). The sensor's receiver utilizes a single-photon 

avalanche diode (SPAD), which exhibits high sensitivity to light [1]. Direct TOF sensors, such as light detection 

and ranging (LiDAR) sensors, consist of four primary components [2], as depicted in Fig. 1(b): a SPAD array and 

analog front-end (AFE) circuits followed by a signal combiner, time-to-digital converter (TDC) that converts the 

photon detection time to digital data, histogramming and digital signal processing unit, and timing controller for 

the emitter and receiver circuits. 

     

(a)                                                                                    (b) 

Figure 1. (a) Concept of direct time-of-flight measurement and (b) a simplified diagram of a SPAD-based sensor. 

 

To predict the accuracy of the TOF sensor under development, it is crucial to create a model that simulates the 

physical and statistical operating characteristics of the SPAD. Furthermore, a robust simulation platform that 

focuses on the integration of the SPAD model with the entire sensor system is essential. In this work, a SPAD-

based sensor system verification platform is implemented using SystemVerilog and applied to a proximity sensor 

with a relatively simple configuration to assess the verification accuracy. XMODEL primitives [3] are utilized in 

the modeling of SPAD and the proximity sensor to express precise timing information without being limited by the 
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timestep of SystemVerilog simulation. The proximity sensor is designed to measure distances of up to 150 cm and 

achieve a resolution time of 0.2 ns. This system-level simulation will be employed in the design and verification of 

SPAD-based sensors, such as mid- to long-range LiDAR systems with high complexity, in the future. 

II. STATISTICAL BEHAVIORAL MODELING OF SPAD 

Fig. 2 illustrates the operation of the SPAD and AFE circuit to be modeled. The SPAD functions in Geiger 

mode, with a reverse bias higher than the breakdown voltage (VBD) applied. Upon the incidence of a photon on the 

SPAD, an avalanche current is generated, and as this current passes through the AFE, a digital pulse is generated. 

The width of the digital pulse is referred to as the SPAD dead-time, Tdead, because during this dead-time, another 

digital pulse will not be generated even if a new photon arrives at the SPAD. The SPAD also responds to randomly 

generated dark current. The frequency of the noise pulses due to dark current is quantified as dark count rate (DCR). 

For simulation of SPAD-based sensors, physics-based SPAD models [4, 5] that emulate the detailed dynamics of 

SPAD’s behavior can be used. However, it is essential to implement a model that can effectively represent the 

stochastic distribution of the SPAD’s response time to incident photons and random noise, and incorporate this 

model into the overall system-level simulation. We propose a simple, yet effective SPAD model that takes DCR as 

an input variable, generates output pulses through a Poisson process, and determines the timing of photon-induced 

pulse generation based on the incident light intensity and the photon detection probability of the SPAD. 

 

Figure 2. The operation of SPAD and analog front-end circuit. 

 

Fig. 3 illustrates the proposed SPAD model, with detailed descriptions for the inputs in Table I. In the “Dark 

Count Generator”, the “Tnoise Generator” generates the randomized timing of noise pulse initiation, Tnoise. The 

mean frequency of noise pulse generation is determined by the input parameter DCR. To generate pulses at the time 

of Tnoise, the model utilizes an integrator and slicer, and the subsequent “Single Pulse Generator” creates output 

pulses, noise_pulse, with a user-defined pulse width of Tdead. The “Photon Detector” is similar to the “Dark Count 

Generator,” but it takes the light pulse shape (pulse_shape), photon arrival time (TOF), light intensity (INT), and 

photon detection probability (PDP) as inputs, and uses these values to calculate the photon-induced pulse 

generation time (Tph). Finally, the “Dead time Controller” compares ph_pulse with noise_pulse and and if there is 

an overlap between the two pulses, only the first generated pulse is extracted as the SPAD_pulse. The proposed 

modeling can be easily customized by adjusting the input values to match the specifications of the designed SPAD 

and the measurement environment. 

Table I. The input information. 

Input Description Unit 

RSTB Reset signal for operation  

Tdead Dead-time of SPAD ns 

pulse_shape Light pulse information (Resolution = 0.02 ns)  

TOF Time-of-flight of the object ns 

INT Light intensity photons/pulse 

PDP Photon detection probability of SPAD  

DCR Dark count rate counts/ns 
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Figure 3. Block diagram of the SPAD model. The inputs for the Tph Generator are described on the left side. 

 

A. Tnoise Generator 

In the Tnoise Generator, the timestamp when a dark count takes place, denoted as Tnoise, is ascertained from 

the Poisson process. If we consider a Poisson process with a rate of λ, the probability that the first dark count 

generation time, 𝑋1, exceeds time t can be expressed as: 

𝑃(𝑋1 > 𝑡) = 𝑃(𝑛𝑜 𝑑𝑎𝑟𝑘 𝑐𝑜𝑢𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 𝑡) 

                                                       = 𝑒−𝜆𝑡 
(1) 

Similarly, the probability that the first dark count generation occurs within the time frame t is given by: 

𝑃(𝑋1 ≤ 𝑡) = 1 − 𝑒−𝜆𝑡 (2) 

From (2), the interarrival time, t, can be deduced as: 

𝑡 =
ln(1 − 𝑃(𝑋1 ≤ 𝑡))

−𝜆
 (3) 

Fig. 4 presents the code of the Tnoise Generator, while Fig. 5 illustrates the timing diagram of the Dark Count 

Generator in Fig. 3. 𝑃(𝑋1 ≤ 𝑡)  in (3) is replaced by the rand_uniform(0,1) function, which follows a uniform 

distribution over the interval [0,1]. Additionally, the rate λ is substituted for the input DCR. The generation time of 

the first noise pulse after RSTB transitions to a rising edge is determined using (3). When the linear integrator output, 

integ, intersects with the computed timing of Tnoise, gen in Fig. 3 generates a pulse with a width Tdead/2. Tnoise 

is continuously updated while RSTB is 1. If the updated Tnoise is less than Tdead, Tnoise is recalculated and added 

to the previous value until the sum exceeds Tdead. Also, since Tnoise is updated every time gen has a falling edge, 

Tdead/2 - the width of gen - is subtracted from the Tnoise value determined by (3). 

module Tnoise_gen   

… 

//For initial Tnoise (TDCR) 

always @(posedge RSTB) begin 

    //If random_dark = 1, ln(1-random_dark) = -inf (NOT possible) 

    random_dark = rand_uniform(0,1); 

    while(random_dark >= 1) random_dark = rand_uniform(0,1); 

TDCR = $ln(1-random_dark) / (-DCR); 

end 
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//For updating Tnoise when gen has a falling edge 

always @(negedge gen) begin 

    TDCR = 0;  random_dark = rand_uniform(0,1); 

    while(random_dark >= 1) random_dark = rand_uniform(0,1); 

    TDCR = $ln(1-random_dark) / (-DCR); 

    //For considering dead-time (Tdead) 

    while(TDCR < Tdead) begin  

        random_dark = rand_uniform(0,1); 

        while(random_dark >= 1) random_dark = rand_uniform(0,1); 

        TDCR = TDCR + $ln(1-random_dark) / (-DCR); 

    end 

    TDCR = TDCR – (Tdead/2); 

end 

assign Tnoise = TDCR; 

endmodule 

Figure 4. Tnoise Generator calculating the randomized timing of noise pulse initiation. 

 

 
 Figure 5. Timing diagram of the Dark Count Generator. 

 

B. Tph Generator 

Tph Generator calculates the timing of photon detection (Tph)  based on the characteristics of the incident light, 

described by pulse_shape and its intensity (INT) through the lens of the Poisson process. The definitions and 

relationships of pulse_shape, TOF, INT, and PDP - inputs of Tph Generator - are illustrated on the left side of Fig. 

3. Fig. 6 presents the code of Tph Generator. First, pulse_shape_disc is obtained by discretizing the input 

pulse_shape. Given that the pulse_shape used in the simulation has a fine precision of 0.02 ns, pulse_shape_disc 

adopts a resolution time (Tres) of 0.02 ×  interval ns. Second, pulse_shape_int is achieved by normalizing 

pulse_shape_disc and multiplying it by INT. Contrary to the Tnoise Generator, where the user-defined DCR input 

dictates the expected value of the Poisson process, in the Tph Generator, each datum of pulse_shape_int is taken 

as the expected value of the Poisson process. The next step employs the cumulative distribution function (CDF) of 

the Poisson process to calculate at which point within pulse_shape_int the SPAD reacts. 

Let X represent a random variable conforming a Poisson process with a rate of λ. The probability of the SPAD 

responding n times is depicted as: 

𝑃{𝑋 = 𝑛} =
𝑒−𝜆𝜆𝑛

𝑛!
 (4) 
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From (4), the CDF is derived as: 

𝑃{𝑋 ≤ 𝑛} = ∑
𝑒−𝜆𝜆𝑘

𝑘!

𝑛

𝑘=0

 (5) 

Each datum from pulse_shape_int is inserted in place of λ in (5). The value of k increments by one until cdf 

surpasses thres_cdf which randomly derives its value from the rand_uniform(0,1) function. The derived k can be 

interpreted as the number of photons successfully reaching the SPAD for each expected value of pulse_shape_int. 

Then, given the SPAD’s PDP, a determination is made as to whether each photon’s arrival instigates an avalanche. 

In this context, for each photon’s arrival, the randomly generated thres_pdp is compared with the PDP input value. 

For example, if the calculated k equals 2, the comparison between thres_pdp and PDP is performed twice. This 

process is sequentially conducted for each datum within pulse_shape_int. If the PDP criterion is met for the first 

time at the i-th datum, it means that a pulse was produced by a photon at the timestamp of TOF + i × Tres ns. 

module Tph_gen  

… 

always @(posedge RSTB) begin 

signal_sequence = 0;     //Photon detection time within input light pulse, pulse_shape 

Tph = 0;                         //Photon detection time (= TOF + signal_sequence) 

pulse_sum = 0;              //Sum of discretized pulse_shape data (pulse_shape_disc) 

 

    //For discretizing pulse_shape (Resolution time of pulse_shape_disc = (interval * 0.02) ns) 

    for(i=0; i<(pulse_len/interval); i++)    pulse_shape_disc[i+1] = pulse_shape[i*interval+int’(interval/2)+1];    

 

//For normalizing pulse_shape_disc 

    for(j=0; j<(pulse_len/interval)+1; j++) begin 

        if(pulse_shape_disc[j]<0) pulse_shape_disc[j] = 0; 

        pulse_sum = pulse_sum + pulse_shape_disc[j];     

    end 

    for(k=0; k<(pulse_len/interval)+1; k++)   pulse_shape_int[k] = pulse_shape_disc[k] / pulse_sum * INT;     

    Tres = 0.02 * interval;   //Tres: Resolution time of pulse_shape_int 

 

    //For modeling photon arrival and SPAD avalanche 

    for(i=0; i<(pulse_len/interval)+1; i++) begin 

        k = 0;  cdf = 0;  kfactorial = 1;   thres_cdf = rand_uniform(0,1); 

        while (1) begin 

            cdf = cdf + $exp(-pulse_shape_int[i]) * $pow(pulse_shape_int[i], k) / kfactorial; 

            if(cdf <= thres_cdf) begin 

                //For considering PDP of the SPAD 

                thres_pdp = rand_uniform(0,1); 

                if(PDP > thres_pdp) begin 

                    signal_sequence = i * Tres;  

                    break; 

                end 

                k = k+1;  kfactorial = kfactorial * k; 

            end 

            else break;             

        end 

        if(signal_sequence != 0) break; 

    end 

    if(signal_sequence != 0) Tph = TOF + signal_sequence;     

end 

endmodule 

Figure 6. Tph Generator calculating the photon-induced pulse generation time. 
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III. MODELING OF A SPAD-BASED SENSOR 

Fig. 7 illustrates the overall block diagram of a SPAD-based sensor configured as a proximity sensor using the 

structure in [6, 7]. Since the SPAD_pulse from the SPAD model passes through the T flip-flop and XOR Tree, 

TDC_IN toggles whenever 64 SPADs react. The multi-event folded-flash TDC digitizes the timing of TDC_IN 

toggles, while the time resolution of TDC is determined by phase-locked loop (PLL) clock (PLL_CLK). 

Subsequently, a histogram is stacked to obtain an accurate TOF. The Histogram 12b Counter stacks the histogram 

using either the Ripple Counter (SEL = 0) or Shift Register (SEL = 1) method. By setting the number of counter 

bins to 12, up to 4095 measurements can be made. The histogram output, Count_clk0~7, can be plotted directly 

or post-processed by an FIR filter. The Controller module adjusts the overall system operation timing. To the best 

of our knowledge, a system-level simulation of the sensor, including SPAD modeling in SystemVerilog, has not 

been demonstrated. 

 
Figure 7. Overall Block diagram of the SPAD-Based Sensor model with details of each block.  

IV. TESTBEHCH FOR A SPAD-BASED SENSOR SIMULATION 

Fig. 8 illustrates a block diagram for the testbench of a SPAD-based sensor. The TB_HIST module consists of 

PLL Clock Generator, Sensor TOP, and Timing Aligner. In the PLL Clock Generator, the frequency of the 8-phase 

PLL_CLK was set to 600 MHz which determines the TDC resolution of  208 ps. The PLL_CLK’s RMS jitter was 

set to 6 ps using the freq_to_clk primitive cell. In the Sensor TOP module, the input values are defined through the 

“tb_hist.sv” file. Once the histogram has accumulated as many times as desired, the output DONE signal becomes 

1, and the Timing Aligner rearrange the histogram outputs Count_clk0~7 according to their actual timing, and the 

values are sequentially stored in the “histogram_output” file. Finally, the “plot.py” plots the values stored in the 

“histogram_output”. 

 

Figure 8. Block diagram of the testbench.  
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V. RESULTS 

We performed a system-level simulation of the SPAD-based sensor using two different light pulses: one with 

a dispersed shape and the other with relatively sharp edges. The light pulse cycle was set to 15 ns, including a 

reset timing of 1.66 ns. It can measure up to a distance of about 153 cm, and a total convergence time of 65 us is 

required to measure TOF 4095 times. Fig. 9 shows the overall timing diagram of the simulated sensor operation. 

The total simulation time was about 4.6 minutes. Fig. 10 shows the histogram results for various input conditions, 

including changes in DCR, intensity, TOF, and PDP. It demonstrates that the histogram effectively tracks the 

trend of pulse_shape. We also successfully observed that the various design variables such as the number of 

histogramming, clock jitter characteristics and so on have an impact on the final TOF measurement results. We 

confirmed that the design of the sensor can be successfully verified with the proposed SPAD model and system-

level verification platform. 

 
Figure 9. Timing diagram of the SPAD-based sensor when TOF = 3 ns and Tdead = 10 ns.  
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Figure 10. Normalized pulse_shape value (left) and measured histogram output with 4,095 measurements (right).  

 For the first pulse_shape (left, top), the remaining inputs were fixed at PDP = 0.1, DCR = 0.01 counts/ns, and Tdead = 10 ns.  

For the second pulse_shape (left, bottom), the remaining inputs were fixed at INT = 1 photons/pulse, TOF = 1.5 ns, and Tdead = 5 ns. 

 

VI. CONCLUSION 

This work demonstrated the feasibility of system-level simulation of SPAD-based sensors using 

SystemVerilog. By utilizing the proposed statistical behavioral model of the SPAD, the entire sensor system can 

be verified, and the histogram result can be predicted in early design and verification stages. We confirmed that 

the proposed SPAD model and system-level verification platform successfully verified the design of the SPAD-

based direct Time-of-Flight sensor. 
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