

1

System-Level Simulation of a SPAD-Based

Time-of-Flight Sensor in SystemVerilog

Seungah Park1, Hyeongseok Seo2, Canxing Piao2, Jaemin Park3, Jaehyuk Choi1,2, Jung-Hoon Chun1,2

1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea

2SolidVue Inc., Seongnam, Korea

3Scientific Analog Inc., Seoul, Korea

psa8789@skku.edu, hsseo@solid-vue.com, pcanxing@solid-vue.com, jaemin@scianalog.com,

choix215@skku.edu, jhchun@skku.edu

Abstract—This paper introduces a system-level simulation platform developed in SystemVerilog for a SPAD (Single

Photon Avalanche Diode)-based direct Time-of-Flight Sensor. The distinct characteristics of SPAD, including random

noise and photon detection attributes, are statistically modeled using the Poisson process. Utilizing the system-level

verification platform, our proposed SPAD model ensures a comprehensive assessment of depth sensor systems,

covering various incident light conditions and SPAD characteristics. It is demonstrated that a 1.5-meter range

proximity sensor, equipped with 64 SPADs, a multi-event folded-flash TDC, a 12-bit histogram counter etc., completes

its simulation in just 4.6 minutes, yielding 4095 histogram data points.

Keywords—Single-photon avalanche diode (SPAD); Time-of-flight sensor; Modeling; SystemVerilog

I. INTRODUCTION

The Direct time-of-flight (TOF) sensor is a device that provides distance (Depth) information by measuring the

time difference between a light pulse emitted from the sensor's emitter and the light pulse incident on the sensor

after being reflected from an object, as illustrated in Fig. 1(a). The sensor's receiver utilizes a single-photon

avalanche diode (SPAD), which exhibits high sensitivity to light [1]. Direct TOF sensors, such as light detection

and ranging (LiDAR) sensors, consist of four primary components [2], as depicted in Fig. 1(b): a SPAD array and

analog front-end (AFE) circuits followed by a signal combiner, time-to-digital converter (TDC) that converts the

photon detection time to digital data, histogramming and digital signal processing unit, and timing controller for

the emitter and receiver circuits.

(a) (b)

Figure 1. (a) Concept of direct time-of-flight measurement and (b) a simplified diagram of a SPAD-based sensor.

To predict the accuracy of the TOF sensor under development, it is crucial to create a model that simulates the

physical and statistical operating characteristics of the SPAD. Furthermore, a robust simulation platform that

focuses on the integration of the SPAD model with the entire sensor system is essential. In this work, a SPAD-

based sensor system verification platform is implemented using SystemVerilog and applied to a proximity sensor

with a relatively simple configuration to assess the verification accuracy. XMODEL primitives [3] are utilized in

the modeling of SPAD and the proximity sensor to express precise timing information without being limited by the

mailto:psa8789@skku.edu
mailto:hsseo@solid-vue.com
mailto:pcanxing@solid-vue.com
mailto:jaemin@scianalog.com
mailto:choix215@skku.edu
mailto:jhchun@skku.edu

2

timestep of SystemVerilog simulation. The proximity sensor is designed to measure distances of up to 150 cm and

achieve a resolution time of 0.2 ns. This system-level simulation will be employed in the design and verification of

SPAD-based sensors, such as mid- to long-range LiDAR systems with high complexity, in the future.

II. STATISTICAL BEHAVIORAL MODELING OF SPAD

Fig. 2 illustrates the operation of the SPAD and AFE circuit to be modeled. The SPAD functions in Geiger

mode, with a reverse bias higher than the breakdown voltage (VBD) applied. Upon the incidence of a photon on the

SPAD, an avalanche current is generated, and as this current passes through the AFE, a digital pulse is generated.

The width of the digital pulse is referred to as the SPAD dead-time, Tdead, because during this dead-time, another

digital pulse will not be generated even if a new photon arrives at the SPAD. The SPAD also responds to randomly

generated dark current. The frequency of the noise pulses due to dark current is quantified as dark count rate (DCR).

For simulation of SPAD-based sensors, physics-based SPAD models [4, 5] that emulate the detailed dynamics of

SPAD’s behavior can be used. However, it is essential to implement a model that can effectively represent the

stochastic distribution of the SPAD’s response time to incident photons and random noise, and incorporate this

model into the overall system-level simulation. We propose a simple, yet effective SPAD model that takes DCR as

an input variable, generates output pulses through a Poisson process, and determines the timing of photon-induced

pulse generation based on the incident light intensity and the photon detection probability of the SPAD.

Figure 2. The operation of SPAD and analog front-end circuit.

Fig. 3 illustrates the proposed SPAD model, with detailed descriptions for the inputs in Table I. In the “Dark

Count Generator”, the “Tnoise Generator” generates the randomized timing of noise pulse initiation, Tnoise. The

mean frequency of noise pulse generation is determined by the input parameter DCR. To generate pulses at the time

of Tnoise, the model utilizes an integrator and slicer, and the subsequent “Single Pulse Generator” creates output

pulses, noise_pulse, with a user-defined pulse width of Tdead. The “Photon Detector” is similar to the “Dark Count

Generator,” but it takes the light pulse shape (pulse_shape), photon arrival time (TOF), light intensity (INT), and

photon detection probability (PDP) as inputs, and uses these values to calculate the photon-induced pulse

generation time (Tph). Finally, the “Dead time Controller” compares ph_pulse with noise_pulse and and if there is

an overlap between the two pulses, only the first generated pulse is extracted as the SPAD_pulse. The proposed

modeling can be easily customized by adjusting the input values to match the specifications of the designed SPAD

and the measurement environment.

Table I. The input information.

Input Description Unit

RSTB Reset signal for operation

Tdead Dead-time of SPAD ns

pulse_shape Light pulse information (Resolution = 0.02 ns)

TOF Time-of-flight of the object ns

INT Light intensity photons/pulse

PDP Photon detection probability of SPAD

DCR Dark count rate counts/ns

3

Figure 3. Block diagram of the SPAD model. The inputs for the Tph Generator are described on the left side.

A. Tnoise Generator

In the Tnoise Generator, the timestamp when a dark count takes place, denoted as Tnoise, is ascertained from

the Poisson process. If we consider a Poisson process with a rate of λ, the probability that the first dark count

generation time, 𝑋1, exceeds time t can be expressed as:

𝑃(𝑋1 > 𝑡) = 𝑃(𝑛𝑜 𝑑𝑎𝑟𝑘 𝑐𝑜𝑢𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 𝑡)

 = 𝑒−𝜆𝑡
(1)

Similarly, the probability that the first dark count generation occurs within the time frame t is given by:

𝑃(𝑋1 ≤ 𝑡) = 1 − 𝑒−𝜆𝑡 (2)

From (2), the interarrival time, t, can be deduced as:

𝑡 =
ln(1 − 𝑃(𝑋1 ≤ 𝑡))

−𝜆
 (3)

Fig. 4 presents the code of the Tnoise Generator, while Fig. 5 illustrates the timing diagram of the Dark Count

Generator in Fig. 3. 𝑃(𝑋1 ≤ 𝑡) in (3) is replaced by the rand_uniform(0,1) function, which follows a uniform

distribution over the interval [0,1]. Additionally, the rate λ is substituted for the input DCR. The generation time of

the first noise pulse after RSTB transitions to a rising edge is determined using (3). When the linear integrator output,

integ, intersects with the computed timing of Tnoise, gen in Fig. 3 generates a pulse with a width Tdead/2. Tnoise

is continuously updated while RSTB is 1. If the updated Tnoise is less than Tdead, Tnoise is recalculated and added

to the previous value until the sum exceeds Tdead. Also, since Tnoise is updated every time gen has a falling edge,

Tdead/2 - the width of gen - is subtracted from the Tnoise value determined by (3).

module Tnoise_gen

…

//For initial Tnoise (TDCR)

always @(posedge RSTB) begin

 //If random_dark = 1, ln(1-random_dark) = -inf (NOT possible)

 random_dark = rand_uniform(0,1);

 while(random_dark >= 1) random_dark = rand_uniform(0,1);

TDCR = $ln(1-random_dark) / (-DCR);

end

4

//For updating Tnoise when gen has a falling edge

always @(negedge gen) begin

 TDCR = 0; random_dark = rand_uniform(0,1);

 while(random_dark >= 1) random_dark = rand_uniform(0,1);

 TDCR = $ln(1-random_dark) / (-DCR);

 //For considering dead-time (Tdead)

 while(TDCR < Tdead) begin

 random_dark = rand_uniform(0,1);

 while(random_dark >= 1) random_dark = rand_uniform(0,1);

 TDCR = TDCR + $ln(1-random_dark) / (-DCR);

 end

 TDCR = TDCR – (Tdead/2);

end

assign Tnoise = TDCR;

endmodule

Figure 4. Tnoise Generator calculating the randomized timing of noise pulse initiation.

 Figure 5. Timing diagram of the Dark Count Generator.

B. Tph Generator

Tph Generator calculates the timing of photon detection (Tph) based on the characteristics of the incident light,

described by pulse_shape and its intensity (INT) through the lens of the Poisson process. The definitions and

relationships of pulse_shape, TOF, INT, and PDP - inputs of Tph Generator - are illustrated on the left side of Fig.

3. Fig. 6 presents the code of Tph Generator. First, pulse_shape_disc is obtained by discretizing the input

pulse_shape. Given that the pulse_shape used in the simulation has a fine precision of 0.02 ns, pulse_shape_disc

adopts a resolution time (Tres) of 0.02 × interval ns. Second, pulse_shape_int is achieved by normalizing

pulse_shape_disc and multiplying it by INT. Contrary to the Tnoise Generator, where the user-defined DCR input

dictates the expected value of the Poisson process, in the Tph Generator, each datum of pulse_shape_int is taken

as the expected value of the Poisson process. The next step employs the cumulative distribution function (CDF) of

the Poisson process to calculate at which point within pulse_shape_int the SPAD reacts.

Let X represent a random variable conforming a Poisson process with a rate of λ. The probability of the SPAD

responding n times is depicted as:

𝑃{𝑋 = 𝑛} =
𝑒−𝜆𝜆𝑛

𝑛!
 (4)

5

From (4), the CDF is derived as:

𝑃{𝑋 ≤ 𝑛} = ∑
𝑒−𝜆𝜆𝑘

𝑘!

𝑛

𝑘=0

 (5)

Each datum from pulse_shape_int is inserted in place of λ in (5). The value of k increments by one until cdf

surpasses thres_cdf which randomly derives its value from the rand_uniform(0,1) function. The derived k can be

interpreted as the number of photons successfully reaching the SPAD for each expected value of pulse_shape_int.

Then, given the SPAD’s PDP, a determination is made as to whether each photon’s arrival instigates an avalanche.

In this context, for each photon’s arrival, the randomly generated thres_pdp is compared with the PDP input value.

For example, if the calculated k equals 2, the comparison between thres_pdp and PDP is performed twice. This

process is sequentially conducted for each datum within pulse_shape_int. If the PDP criterion is met for the first

time at the i-th datum, it means that a pulse was produced by a photon at the timestamp of TOF + i × Tres ns.

module Tph_gen

…

always @(posedge RSTB) begin

signal_sequence = 0; //Photon detection time within input light pulse, pulse_shape

Tph = 0; //Photon detection time (= TOF + signal_sequence)

pulse_sum = 0; //Sum of discretized pulse_shape data (pulse_shape_disc)

 //For discretizing pulse_shape (Resolution time of pulse_shape_disc = (interval * 0.02) ns)

 for(i=0; i<(pulse_len/interval); i++) pulse_shape_disc[i+1] = pulse_shape[i*interval+int’(interval/2)+1];

//For normalizing pulse_shape_disc

 for(j=0; j<(pulse_len/interval)+1; j++) begin

 if(pulse_shape_disc[j]<0) pulse_shape_disc[j] = 0;

 pulse_sum = pulse_sum + pulse_shape_disc[j];

 end

 for(k=0; k<(pulse_len/interval)+1; k++) pulse_shape_int[k] = pulse_shape_disc[k] / pulse_sum * INT;

 Tres = 0.02 * interval; //Tres: Resolution time of pulse_shape_int

 //For modeling photon arrival and SPAD avalanche

 for(i=0; i<(pulse_len/interval)+1; i++) begin

 k = 0; cdf = 0; kfactorial = 1; thres_cdf = rand_uniform(0,1);

 while (1) begin

 cdf = cdf + $exp(-pulse_shape_int[i]) * $pow(pulse_shape_int[i], k) / kfactorial;

 if(cdf <= thres_cdf) begin

 //For considering PDP of the SPAD

 thres_pdp = rand_uniform(0,1);

 if(PDP > thres_pdp) begin

 signal_sequence = i * Tres;

 break;

 end

 k = k+1; kfactorial = kfactorial * k;

 end

 else break;

 end

 if(signal_sequence != 0) break;

 end

 if(signal_sequence != 0) Tph = TOF + signal_sequence;

end

endmodule

Figure 6. Tph Generator calculating the photon-induced pulse generation time.

6

III. MODELING OF A SPAD-BASED SENSOR

Fig. 7 illustrates the overall block diagram of a SPAD-based sensor configured as a proximity sensor using the

structure in [6, 7]. Since the SPAD_pulse from the SPAD model passes through the T flip-flop and XOR Tree,

TDC_IN toggles whenever 64 SPADs react. The multi-event folded-flash TDC digitizes the timing of TDC_IN

toggles, while the time resolution of TDC is determined by phase-locked loop (PLL) clock (PLL_CLK).

Subsequently, a histogram is stacked to obtain an accurate TOF. The Histogram 12b Counter stacks the histogram

using either the Ripple Counter (SEL = 0) or Shift Register (SEL = 1) method. By setting the number of counter

bins to 12, up to 4095 measurements can be made. The histogram output, Count_clk0~7, can be plotted directly

or post-processed by an FIR filter. The Controller module adjusts the overall system operation timing. To the best

of our knowledge, a system-level simulation of the sensor, including SPAD modeling in SystemVerilog, has not

been demonstrated.

Figure 7. Overall Block diagram of the SPAD-Based Sensor model with details of each block.

IV. TESTBEHCH FOR A SPAD-BASED SENSOR SIMULATION

Fig. 8 illustrates a block diagram for the testbench of a SPAD-based sensor. The TB_HIST module consists of

PLL Clock Generator, Sensor TOP, and Timing Aligner. In the PLL Clock Generator, the frequency of the 8-phase

PLL_CLK was set to 600 MHz which determines the TDC resolution of 208 ps. The PLL_CLK’s RMS jitter was

set to 6 ps using the freq_to_clk primitive cell. In the Sensor TOP module, the input values are defined through the

“tb_hist.sv” file. Once the histogram has accumulated as many times as desired, the output DONE signal becomes

1, and the Timing Aligner rearrange the histogram outputs Count_clk0~7 according to their actual timing, and the

values are sequentially stored in the “histogram_output” file. Finally, the “plot.py” plots the values stored in the

“histogram_output”.

Figure 8. Block diagram of the testbench.

7

V. RESULTS

We performed a system-level simulation of the SPAD-based sensor using two different light pulses: one with

a dispersed shape and the other with relatively sharp edges. The light pulse cycle was set to 15 ns, including a

reset timing of 1.66 ns. It can measure up to a distance of about 153 cm, and a total convergence time of 65 us is

required to measure TOF 4095 times. Fig. 9 shows the overall timing diagram of the simulated sensor operation.

The total simulation time was about 4.6 minutes. Fig. 10 shows the histogram results for various input conditions,

including changes in DCR, intensity, TOF, and PDP. It demonstrates that the histogram effectively tracks the

trend of pulse_shape. We also successfully observed that the various design variables such as the number of

histogramming, clock jitter characteristics and so on have an impact on the final TOF measurement results. We

confirmed that the design of the sensor can be successfully verified with the proposed SPAD model and system-

level verification platform.

Figure 9. Timing diagram of the SPAD-based sensor when TOF = 3 ns and Tdead = 10 ns.

8

Figure 10. Normalized pulse_shape value (left) and measured histogram output with 4,095 measurements (right).

 For the first pulse_shape (left, top), the remaining inputs were fixed at PDP = 0.1, DCR = 0.01 counts/ns, and Tdead = 10 ns.

For the second pulse_shape (left, bottom), the remaining inputs were fixed at INT = 1 photons/pulse, TOF = 1.5 ns, and Tdead = 5 ns.

VI. CONCLUSION

This work demonstrated the feasibility of system-level simulation of SPAD-based sensors using

SystemVerilog. By utilizing the proposed statistical behavioral model of the SPAD, the entire sensor system can

be verified, and the histogram result can be predicted in early design and verification stages. We confirmed that

the proposed SPAD model and system-level verification platform successfully verified the design of the SPAD-

based direct Time-of-Flight sensor.

ACKNOWLEDGMENT

This work was supported by the BK21 FOUR Project.

REFERENCES

[1] F. Piron, D. Morrison, M. R. Yuce and J. -M. Redouté, "A Review of Single-Photon Avalanche Diode Time-of-Flight Imaging Sensor

Arrays," IEEE Sensors Journal, vol. 21, no. 11, pp. 12654-12666, June. 2021.

[2] Becker W. Advanced time-correlated single-photon counting techniques, Springer, 2005.

[3] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com/xmodel.

[4] Z. Cheng, X. Zheng, D. Palubiak, M. J. Deen and H. Peng, "A Comprehensive and Accurate Analytical SPAD Model for Circuit

Simulation," IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 1940-1948, May. 2016.

[5] G. Giustolisi, R. Mita and G. Palumbo, "Verilog-A modeling of SPAD statistical phenomena," IEEE International Symposium of Circuits

and Systems (ISCAS), Brazil, 2011.

[6] N. A. W. Dutton, S. Gnecchi, L. Parmesan, A. J. Holmes, B. Rae, L. A. Grant and R. K. Henderson, "11.5 A time-correlated single-

photon-counting sensor with 14GS/S histogramming time-to-digital converter," IEEE International Solid-State Circuits Conference

(ISSCC), 2015.

[7] T. Al Abbas, N. A. W. Dutton, O. Almer, N. Finlayson, F. M. D. Rocca and R. Henderson, "A CMOS SPAD Sensor With a Multi-Event

Folded Flash Time-to-Digital Converter for Ultra-Fast Optical Transient Capture," IEEE Sensors Journal, vol. 18, no. 8, pp. 3163-3173,

April. 2018.

https://www.scianalog.com/xmodel

