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Abstract— One of the principal features driving mobile market is the camera specification. Based on the needs of 

consumer market, there is a demand for camera sensors from the entry level to premium ones. An Image Sensor SOC 

will have many image processing sub-blocks to capture a high quality image. A CMOS image sensor has an Analog 

component which captures light, converts it to digital value and feeds it to digital pipeline. There are noises involved in 

Analog operation and manufacturing defects during fabrication. The digital pipeline has to mitigate these noises and 

defects for a high quality image output. Finally, the high quality image is sent to the host via Industry standard serial 

protocol. For a high quality image, advanced image processing IPs and algorithms are developed, resulting in increased 

design complexity. Additionally, the ever increasing need for higher resolution Image Sensors leads to larger designs. 

Due to market demand and aggressive schedules, the timelines for Design Verification shrink along with emphasis on 

quality validation. The key component for verification of any ISP (Image Signal Processing) algorithm is scoreboard, 

where we compare RTL output against golden reference model. A robust, configurable scoreboard architecture is vital 

to meet the verification quality in a short time frame. This architecture needs to be reusable across all sub-blocks. This 

paper details the practices followed in scoreboard implementation to achieve high quality verification within the 

stipulated time. 

Keywords— scoreboard; callbacks; verification; parameterization; image sensor; multimedia; adaptability; scalability; 

reusability; 

I.  INTRODUCTION 

A typical CMOS Image Sensor (Figure 1.) has Analog and Digital components. Analog components consist of 

the Active Pixel sensor(APS) and Analog-to-Digital converters(ADC). An APS can be considered as 2d-array with 

rows and columns. Each entry in an array is a photo-diode. This photo-diode along with analog circuitry is called 

as pixel. Pixel is the building block of Image Sensor which captures light and converts to electric signal. These 

electric signals are converted to digital values using ADCs. The timing block in digital logic generates the control 

signals to Analog, extracts the information from pixel array and sends the data to digital pipeline. Different kinds 

of Analog noises emerge during the operation of pixels and ADCs. Defects like dead-pixel arise while 

manufacturing. The digital pipeline, which has the image processing algorithms has to alleviate these noises and 

defects for a high quality image output. The processed image data is sent to the host via industry standard serial 

protocol. Every complete readout of APS is termed as a Frame. Sending out first pixel indicates the start of the 

frame and the last pixel, as end of the frame. Based on the application and use-case, multiple frames can be readout. 

The number of such frames captured in a second is called FPS (Frames per Second). 

There are multiple sub-blocks involved in image processing to mitigate different kinds of noises and defects. 

To validate the functionality of these image processing blocks, we use the reference models in our scoreboard. A 

typical scoreboard architecture has been depicted in Figure 2. 
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Figure 1. A typical CMOS Image Sensor 

A high level language is used to implement the image processing algorithms, which serve as golden reference 

models. Generally, the reference model is written in ‘C’. In scoreboard, the RTL is qualified using the C-models. 

Each sub-block has an individual scoreboard. For the industry standard output protocol, we use VIPs (Verification 

IPs) to verify the functionality. 

 

 

Figure 2. A typical Scoreboard architecture 
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II. CHALLENGES IN VERIFICATION 

With short design timelines and time to market, verification team need to have stable base verification 

environment which can be tuned easily for new designs. The scoreboard architecture needs to address the 

following challenges:  

A. Scalability and Adaptability 

The end consumer is expecting DSLR (Digital Single-Lens Reflex Camera) like performance in Mobile 

Camera. To meet such emerging market trends, combined with the ever increasing demand for higher resolutions, 

the CMOS image sensor for mobiles has become very sophisticated. The rise in number of blocks associated in 

enhancing the image quality as well as their increasing algorithm complexity adds to the challenge. As an 

illustration, there are more than 40 blocks(IPs) in a premium Image Sensor. Verification team has to ensure that all 

the blocks are thoroughly verified with their respective reference models. Due to aggressive timelines, the 

scoreboard setup for all the IPs has to be brought up in quick time. Therefore, the scoreboard structure should be 

generic to be easily scalable for all the blocks. Further, we are witnessing the growth in market for Image Sensors 

in Automotive Industry and other security applications. The design of Image Sensors for these industries will be 

different from that of Mobile phones. The scoreboard structure should be easily adaptable to cater to different design 

needs. 

B. Reusablity and Portability 

We have seen the increase in resolution of Image Sensors from 5MP(Mega Pixel) to 200MP. With the increase 

in resolution of Image sensors, the simulation times have shot up from hours to days. Now verification teams have 

to use Emulation (Simulation Acceleration) along with simulation to meet the timelines. Hence, the scoreboard 

architecture should be reusable across simulation and emulation platforms. 

With newer and complex algorithms, need arises to do both IP and sub-system level verification. This IP setup 

should be seamlessly portable to the SOC testbench to verify the entire pipeline. This becomes easy if we have a 

standard scoreboard architecture across IP and SOC environments. 

C. Resource Management 

With larger resolutions, the amount of data to be stored and processed by scoreboard of each block increases. 

With many blocks, this creates a cascading effect that may lead to simulation crashes. In addition to this, the 

simulation time is in order of days for such designs. Even though Simulation Acceleration setup on emulation is 

able to solve the large run-time issue, it is limited by high cost hardware and limited licenses.  

Considering aggressive timelines, members in team have to work in parallel on different blocks independently. 

There is a need to manage the manpower, licenses and run times to meet the product schedule. The scoreboard 

architecture should be versatile to solve the above concerns. 

From the challenges mentioned above, it is evident that lack of proper scoreboard architecture will leave out 

gaps in verification. So, for high quality functional verification and faster execution, it is necessary to streamline 

the scoreboard framework. 

III. PROPOSED SOLUTION 

To address all these challenges, we have developed a Scoreboard eco-system using parameterization, UVM 

Callbacks, and a file-based monitor.  

A. Parameterization 

Parameters are like constants local to that particular class instance. The parameter value can be used to define a 

set of attributes in class. Default values can be overridden by passing a new set of parameters during instantiation. 

This is called parameter overriding [1]. We will discuss how we used parameterization in UVC (Universal 

Verification Component) and Scoreboard classes to address the defined challenges. 

There are standard design specifications which change across SOCs as well as IPs within a SOC. In an Image 

sensor, there are multiple sub-blocks, each working with different number of data channels, data bit-width, along 
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with different sideband signals. Figure-3 illustrates this for few blocks. Typically, there are 10-15 standard design 

parameters that vary across blocks in the chain. 

  

Figure 3. Interface signals across blocks 

Further, we need scoreboard for each block to find the source of issue with the help of reference model. Based 

on its implementation, reference model interface format can be different as compared to RTL. For example, 

reference model works on 1-channel interface whereas RTL has 4-channel interface. Hence, there is a need to 

maintain the same format for proper comparison between reference model and RTL. 

To address these challenges, in the proposed scoreboard architecture, we have defined 2 types of parameters – 

UVC parameters and Scoreboard parameters. 

 UVC parameters: These parameters are used in UVC logic which constitutes the driver, sequencer, 

sequences and monitor. UVC parameters can be defined as shown in Figure 4. These parameters are 

incorporated in logic of UVC to make the code generic and easily reusable. Transaction packet and interface 

can be defined as shown in Figure 5. In Figure 6, it is shown how monitor logic is parameterized and 

incorporated in testbench. 

                           

Figure 4. UVC parameters 

 

 

 

 

 

Figure 5. UVC Interface and Transaction packet 

BLOCK-1 BLOCK-2 BLOCK-3

4 channels

12 bit

16 channels4 channels

10 bit 11 bit

4-bit flag

interface uvc_if#(uvc_params_t params=uvc_default_params); 

   logic clock; 

   logic [(params.DATA_WIDTH-1):0] data[params.NUM_CHANNELS]; 

   logic [(params.HADDR_WIDTH-1):0] haddr; 

   logic [(params.VADDR_WIDTH-1):0] vaddr; 

   logic [(params.FLAG_WIDTH-1):0] flag; 

endinterface : uvc_if 

 

typedef struct packed { 

  int NUM_CHANNELS; //This parameter captures the info on number of data channels 

  int DATA_WIDTH;   //This parameter captures the bit-width of data channels 

  int HADDR_WIDTH;  //This parameter captures the horizontal addrress width 

  int VADDR_WIDTH;  //This parameter captures the vertical addrress width 

  int FLAG_WIDTH;   //This parameter captures the bit-width of flag 

} uvc_params_t; 

 

parameter uvc_params_t uvc_default_params = '{ 

  //Default values using defines 

  `NUM_CHANNELS,  

  `DATA_WIDTH, 

  `HADDR_WIDTH, 

  `VADDR_WIDTH, 

  `FLAG_WIDTH 

}; 

parameter uvc_params_t uvc_block1_params = 

'{ 

4,  //NUM_CHANNELS 

12, //DATA_WIDTH 

16, //HADDR_WIDTH 

16, //VADDR_WIDTH 

0,  //FLAG_WIDTH 

}; 

 

parameter uvc_params_t uvc_block2_params = 

'{ 

4,  //NUM_CHANNELS 

10, //DATA_WIDTH 

16, //HADDR_WIDTH 

16, //VADDR_WIDTH 

4,  //FLAG_WIDTH 

}; 

 

parameter uvc_params_t uvc_block3_params = 

'{ 

16, //NUM_CHANNELS 

11, //DATA_WIDTH 

16, //HADDR_WIDTH 

16, //VADDR_WIDTH 

0,  //FLAG_WIDTH 

}; 

//UVC INTERFACE 

interface uvc_if#(uvc_params_t params=uvc_default_params); 

   logic clock; 

   logic [(params.DATA_WIDTH-1):0] 

data[params.NUM_CHANNELS]; 

   logic [(params.HADDR_WIDTH-1):0] haddr; 

   logic [(params.VADDR_WIDTH-1):0] vaddr; 

   logic [(params.FLAG_WIDTH-1):0] flag; 

endinterface : uvc_if 

//TRANSACTION PACKET 

class uvc_data_packet_c#(uvc_params_t params = uvc_default_params) 

extends uvm_sequence_item; //{ 

  rand bit [(params.DATA_WIDTH-1):0]   

data_channel[params.NUM_CHANNELS-1:0]; 

  rand bit [(params.HADDR_WIDTH-1):0] haddr; 

  rand bit [(params.VADDR_WIDTH-1):0] vaddr; 

  rand bit [(params.FLAG_WIDTH-1):0] flag; 

endclass: uvc_data_packet_c //} 
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Figure 6. Monitor parameterization example 

 Scoreboard parameters: These are used to keep the attributes configurable across different blocks in the 

scoreboard framework. Parameters can be defined as in Figure 7. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Scoreboard Parameters 

B. UVM_CALLBACKS 

Callbacks are empty methods with a call to them. UVM provides a set of classes, methods and macros to 

implement callbacks [2]. In this section, we will discuss how we used UVM callbacks in our scoreboard 

architecture. In the proposed scoreboard architecture, there are two main components - Scoreboard Callback class 

and Generic Scoreboard Class. We will discuss how we utilized these two components along with parameterization 

to make the scoreboard easily scalable.  

 Scoreboard callback class: In this class, we have the implementation details of packing logic and 

comparison logic between reference model and RTL outputs, as demonstrated in Figure 8. A base 

callback class is defined first and callback class for each block is extended from the base callback class. 

In this base callback class, we implement the packing and comparison logic in common tasks. As per the 

requirement of dedicated packing and comparison logic for different blocks, this can be achieved by 

using function override in their respective callback classes. 

//TESTBENCH TOP 

module testbench_top(); 

  virtual interface uvc_if#(uvc_block1_params) uvc_block1_if; 

  virtual interface uvc_if#(uvc_block2_params) uvc_block2_if; 

  virtual interface uvc_if#(uvc_block3_params) uvc_block3_if; 

 

  dut dut_inst(); //DUT instantiation 

initial 

begin 

  uvm_config_db #(virtual interface 

uvc_if#(uvc_block1_params))::set (null, "*", 

"vif",uvc_block1_if); 

  uvm_config_db #(virtual interface 

uvc_if#(uvc_block2_params))::set (null, "*", 

"vif",uvc_block2_if); 

  uvm_config_db #(virtual interface 

uvc_if#(uvc_block3_params))::set (null, "*", 

"vif",uvc_block3_if); 

end 

//Example for block1/block2/block3 connections 

assign uvc_block1_if.data[0] = `DUT_BLOCK1.data_channel0; 

assign uvc_block1_if.data[1] = `DUT_BLOCK1.data_channel1; 

assign uvc_block2_if.flag    = `DUT_BLOCK2.flag; 

assign uvc_block3_if.haddr   = `DUT_BLOCK3.haddr; 

assign uvc_block3_if.vaddr   = `DUT_BLOCK3.vaddr; 

endmodule 

typedef struct{ 

  int INPUT_DATAW; //Reference model Input data width 

  int OUTPUT_DATAW;//Reference model Output data width 

  int NUM_OF_IN_CHANNEL;//Reference model data channels 

  int NUM_OF_OUT_CHANNEL;//Expected data channels for 

comparison 

  string REF_OUT_FILE_HIER; // Directory name. 

  int ADDR_CHECK_EN; //To enable address checks 

  int FLAG_CHECK_EN; //To enable flag checks 

} sb_params_t; 

 

 

parameter sb_params_t sb_params_default_params = '{ 

10,//INPUT_DATAW              ; 

10, //OUTPUT_DATAW 

4,  //NUM_OF_IN_CHANNEL   ; 

4,  //NUM_OF_OUT_CHANNEL   ; 

"DEFAULT", //REF_OOUT_FILE_HIER; 

1,   //ADDR_CHECK_EN 

1   //FLAG_CHECK_EN 

}; 

parameter sb_params_t sb_params_block2 = '{ 

12,//INPUT_DATAW              ; 

10, //OUTPUT_DATAW 

4,  //NUM_OF_IN_CHANNEL   ; 

4,  //NUM_OF_OUT_CHANNEL   ; 

"BLOCK2", //REF_OOUT_FILE_HIER; 

1,   //ADDR_CHECK_EN 

1   //FLAG_CHECK_EN 

}; 

 

parameter sb_params_t sb_params_block3 = '{ 

10,//INPUT_DATAW              ; 

11, //OUTPUT_DATAW 

4,  //NUM_OF_IN_CHANNEL   ; 

16,  //NUM_OF_OUT_CHANNEL   ; 

"BLOCK3", //REF_OOUT_FILE_HIER; 

1,   //ADDR_CHECK_EN 

0   //FLAG_CHECK_EN 

}; 

//UVC_MONITOR 

class uvc_monitor_c#(uvc_params_t params=uvc_default_params) extends 

uvm_monitor; 

uvc_data_packet_c#(params) packet_collected; 

virtual interface uvc_if #(params) vif; 

 

function void build_phase(uvm_phase phase); 

super.build_phase(phase); 

assert(uvm_config_db#(virtual interface pvi_if#(params))::get(this, "", 

"vif",vif)); 

packet_collected = uvc_data_packet_c#(params)::type_id::create 

($sformatf("packet_collected"),this); 

endfunction : build_phase 

 

virtual task run_phase(uvm_phase phase); 

forever begin 

@(posedge vif.clock) 

if(CONDITION) begin //{ 

packet_collected.haddr <= vif.haddr; 

packet_collected.vaddr <= vif.vaddr; 

for(int i=0; i<params.NUM_CHANNELS;i++) 

packet_collected.data_channel[i] <= vif.data[i]; 

for(int i=0; i<params.FLAG_WIDTH;i++) 

packet_collected.flag[i] <= vif.flag[i]; 

end //} 

end 

endtask : run_phase 

endclass: uvc_monitor_c 
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Figure 8. Scoreboard Callback class 

 Generic scoreboard class: In this class (Figure 9), we have the logic to control when to trigger the packing 

logic, reference model execution and the comparison logic. As the name suggests, this class is generic and  

//GENERIC SB 

class generic_sb_c#(sb_params_t params_sb = sb_default_params,uvc_params_t input_params = uvc_default_params, uvc_params_t output_params = 

uvc_default_params) extends uvm_scoreboard; 

     

    `uvm_register_cb(generic_sb_c#(params_sb,input_params,output_params),sb_callback_base)  

    // TLM PORTS   

    `uvm_analysis_imp_decl(_in_data) 

    `uvm_analysis_imp_decl(_out_data) 

    `uvm_analysis_imp_decl(_flag_data) 

 

    uvm_analysis_imp_in_data #(transaction_packet#(input_params), generic_sb_c#(params_sb,input_params,output_params)) input_data; 

    uvm_analysis_imp_out_data #(transaction_packet#(output_params), generic_sb_c#(params_sb,input_params,output_params)) output_data; 

    uvm_analysis_imp_flag_data #(transaction_packet#(output_params), generic_sb_c#(params_sb,input_params,output_params)) flag_data; 

 

    //Trigger via TLM ports 

    function void write_in_data (input transaction_packet#(input_params) data_pkt); //{ 

      `uvm_do_callbacks(generic_sb_c#(params_sb,input_params,output_params),sb_callback_base,pack_input_data()) 

      `uvm_info(params_sb.BAS_OUT_FILE_HIER, "CAPTURED_INPUT_DATA_WRITE", UVM_LOW) 

    endfunction: write_in_data //} 

 

    function void write_out_data (input transaction_packet#(output_params) data_pkt); //{ 

        `uvm_do_callbacks(generic_sb_c#(params_sb,input_params,output_params),sb_callback_base,pack_output_data()) 

        `uvm_do_callbacks(generic_sb_c#(params_sb,input_params,output_params),sb_callback_base,run_ref_and_compare()) 

    endfunction: write_out_data //} 

 

    function void write_flag_data (input transaction_packet#(output_params) data_pkt); //{ 

        `uvm_do_callbacks(generic_sb_c#(params_sb,input_params,output_params),sb_callback_base,pack_flag_data()) 

    endfunction: write_out_data //} 

 

    virtual task run_phase(uvm_phase phase); 

      super.run_phase(phase); 

        fork 

          begin //{ 

            forever @(negedge vseqr.vintf.Rstn_pad or negedge vseqr.vintf.frame_reset) begin //{ Trigger via EVENT 

              `uvm_do_callbacks(generic_sb_c#(params_sb,input_params,output_params),sb_callback_base,reset_sb()) 

            end//} 

          end //} 

        join_none 

    endtask: run_phase 

endclass: generic_sb_c 

//SB_CALLBACK_CLASS //{ 

class sb_callback_base#(sb_params_t params_sb = 

sb_default_params,uvc_params_t input_params = uvc_default_params, 

uvc_params_t output_params = uvc_default_params) extends uvm_callback; 

 

  virtual function void pack_input_data(); 

  //callback usage 

  //Implement the input packing needed for Reference model 

  endfunction: pack_input_data 

 

  virtual function void pack_output_data(); 

  //callback usage 

  //Implement the output packing needed for comparison 

  endfunction: pack_output_data 

 

  virtual function void pack_flag_data(); 

  //callback usage 

  //Implement the flag packing. 

  endfunction: pack_output_data 

 

  virtual function void run_ref_and_compare(); 

  //callback usage 

  //Implement the reference model call and comparison logic 

  endfunction: run_ref_and_compare 

 

  virtual task reset_sb(); 

  //callback usage 

  //Implement the reset logic 

  endtask: reset_sb 

endclass: sb_callback_class 

//INDIVIDUAL BLOCK CALLBACK CLASS 

class sb_callback_block2#(sb_params_t params_sb = 

sb_default_params,uvc_params_t input_params = 

uvc_default_params,uvc_params_t output_params = uvc_default_params) 

extends 

sb_callback_base#(params_sb,input_pvi_params,output_pvi_params); 

 

  function new(string name="sb_callback_block2"); 

    super.new(name); 

  endfunction: new 

  virtual function void pack_input_data (); //{ 

 //FUNCTION OVERRIDE 

  endfunction : pack_input_data //} 

 

  virtual function void pack_output_data ();  //{ 

//FUNCTION OVERRIDE 

  endfunction : pack_output_data  //} 

 

  virtual function void run_ref_and_compare ();  //{ 

//FUNCTION OVERRIDE 

  endfunction : run_ref_and_compare  //} 

 

endclass : sb_callback_block2 

 

class sb_callback_block3#(sb_params_t params_sb = 

sb_default_params,uvc_params_t input_params = 

uvc_default_params,uvc_params_t output_params = uvc_default_params) 

extends 

sb_callback_base#(params_sb,input_pvi_params,output_pvi_params); 

endclass : sb_callback_block3 

Figure 9: Generic scoreboard class 
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controlled by parameters. The trigger can be done by TLM ports or through events. We register scoreboard 

callback class with this generic scoreboard class using uvm_register_cb. The generic scoreboard and the 

callback classes are connected as shown in Figure 10. 

 

 

 

 

 

 

Figure 10. Callbacks and Scoreboard connections 

C. File-based data handling 

With the help of parameterization and callback-based scoreboard, we have implemented a portable, adaptable, 

scalable and reusable scoreboard architecture. As the scoreboard is streamlined, the emphasis is on the possible 

methods to improve simulation speed. Reference models are designed to work on complete frame information. 

Therefore, the entire frame data needs to be captured before we can trigger the reference model and scoreboard. 

Monitor uses queues to capture the data from RTL and send it to the scoreboard using TLM ports. With higher 

resolutions and addition of HDR (High Dynamic Range) like features, monitor has to capture many folds of data 

in each block monitor. The huge amount of data causes the simulator to slow-down and possibly crashing at times, 

while transferring the data from monitor to scoreboard. It is observed that in Emulation (Simulation Acceleration) 

setup, this data transfer takes lot of time. To tackle this, we approached data handling through files. In this section, 

we will discuss how we used file-based monitor to solve the crash issue and speed up the simulation.  

In this approach, we write the data into a file instead of accumulating entire data in queues. At the start of frame, 

we open a file and the incoming data is collected in it. We adopted a hybrid approach of capturing small amounts 

of data in a queue and then storing in a file, instead of performing continuous file operations. We achieved better 

performance with this hybrid approach. At frame end, the file is closed and scoreboards are triggered. As the entire 

eco-system (Figure 11) is parameterized, the scoreboard knows the file name based on parameter and perform the 

desired operation. This logic is easily portable for emulation as well. 
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UVC parameters

Monitor – Block1
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// sb_callback instances 

sb_callback_block2#(sb_params_block1,uvc_block1_in_params,uvc_block2_in_params) callback_block2; 

sb_callback_block3#(sb_params_block1,uvc_block2_in_params,uvc_block3_in_params) callback_block3; 

 

//generic scoreboard instances 

generic_sb_c#(sb_params_block2,uvc_block1_in_params,uvc_block2_in_params) sb_block2; 

generic_sb_c#(sb_params_block3,uvc_block2_in_params,uvc_block3_in_params) sb_block3; 

 

//Callback connections 

uvm_callbacks#(generic_sb_c#(sb_params_block2,uvc_block1_in_params,uvc_block2_in_params),sb_callback_base)::add(sb_block2,

callback_block2); 

uvm_callbacks#(generic_sb_c#(sb_params_block3,uvc_block2_in_params,uvc_block3_in_params),sb_callback_base)::add(sb_block3,

callback_block3); 

Figure 11. Scoreboard eco-system 
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IV. CONCLUSION AND RESULTS 

1. With this highly reusable setup, scoreboard can be quickly sanitized in Acceleration platform and 

regressions can be run in simulation. We can leverage the benefits of both simulation and emulation in 

parallel. 

2. Owing to generic implementation and configurability, the setup is easily scalable to large designs and 

members of the team can work on it independently which helps in faster execution. 

3. With the new approach in monitor, gain is achieved in run-time (Table I). A high resolution image sensor 

simulation which earlier ran for 2 days before facing simulator crash without reference model execution, 

completed in a day with the proposed updates, with all scoreboard logic executed. 

4. The scoreboard setup can be easily ported to other multimedia teams and applications with minimum effort. 

5. The readability of code improved a lot and is easy for everyone to ramp up on it. 

6. The entire scoreboard architecture is automated and it reduces the bring-up time. A large sensor with 45 

blocks is brought up in 2 days. 

7. Need for big_mem LSF (Load Sharing Facility) has come down with file-based monitor. This is very 

helpful as big_mem licenses are limited. 

Table I. Improvements with file-based monitor 
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Category(with 

scoreboard) 

Queue based Monitor File based monitor Improvement 

Simulation time for 

200MP – Single frame 

50 hours 28 hours 44% 

Simulation time for 

200MP – 2 frames 

105 hours 45 hours 57% 

Simulation time for 12.5 

MP – 2 frames 

12 hours 10 hours 16% 

Emulation run time for 

200MP – Single frame 

14 hours 10 hours 28% 


